Properties

Label 950.4.a.g
Level $950$
Weight $4$
Character orbit 950.a
Self dual yes
Analytic conductor $56.052$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [950,4,Mod(1,950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("950.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 950.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.0518145055\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + (3 \beta - 1) q^{3} + 4 q^{4} + (6 \beta - 2) q^{6} + ( - 8 \beta - 4) q^{7} + 8 q^{8} + ( - 6 \beta + 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} + (3 \beta - 1) q^{3} + 4 q^{4} + (6 \beta - 2) q^{6} + ( - 8 \beta - 4) q^{7} + 8 q^{8} + ( - 6 \beta + 1) q^{9} + ( - 20 \beta + 14) q^{11} + (12 \beta - 4) q^{12} + (41 \beta - 1) q^{13} + ( - 16 \beta - 8) q^{14} + 16 q^{16} + ( - 18 \beta - 76) q^{17} + ( - 12 \beta + 2) q^{18} - 19 q^{19} + ( - 4 \beta - 68) q^{21} + ( - 40 \beta + 28) q^{22} + ( - 14 \beta - 142) q^{23} + (24 \beta - 8) q^{24} + (82 \beta - 2) q^{26} + ( - 72 \beta - 28) q^{27} + ( - 32 \beta - 16) q^{28} + (38 \beta + 72) q^{29} + ( - 92 \beta + 64) q^{31} + 32 q^{32} + (62 \beta - 194) q^{33} + ( - 36 \beta - 152) q^{34} + ( - 24 \beta + 4) q^{36} + ( - 45 \beta + 97) q^{37} - 38 q^{38} + ( - 44 \beta + 370) q^{39} + (74 \beta + 304) q^{41} + ( - 8 \beta - 136) q^{42} + ( - 36 \beta - 144) q^{43} + ( - 80 \beta + 56) q^{44} + ( - 28 \beta - 284) q^{46} + ( - 148 \beta - 216) q^{47} + (48 \beta - 16) q^{48} + (64 \beta - 135) q^{49} + ( - 210 \beta - 86) q^{51} + (164 \beta - 4) q^{52} + (53 \beta - 405) q^{53} + ( - 144 \beta - 56) q^{54} + ( - 64 \beta - 32) q^{56} + ( - 57 \beta + 19) q^{57} + (76 \beta + 144) q^{58} + ( - 186 \beta + 162) q^{59} + (122 \beta - 538) q^{61} + ( - 184 \beta + 128) q^{62} + (16 \beta + 140) q^{63} + 64 q^{64} + (124 \beta - 388) q^{66} + (127 \beta - 329) q^{67} + ( - 72 \beta - 304) q^{68} + ( - 412 \beta + 16) q^{69} + (24 \beta - 848) q^{71} + ( - 48 \beta + 8) q^{72} + ( - 266 \beta - 416) q^{73} + ( - 90 \beta + 194) q^{74} - 76 q^{76} + ( - 32 \beta + 424) q^{77} + ( - 88 \beta + 740) q^{78} + (302 \beta - 714) q^{79} + (150 \beta - 647) q^{81} + (148 \beta + 608) q^{82} + (346 \beta + 254) q^{83} + ( - 16 \beta - 272) q^{84} + ( - 72 \beta - 288) q^{86} + (178 \beta + 270) q^{87} + ( - 160 \beta + 112) q^{88} + (590 \beta + 288) q^{89} + ( - 156 \beta - 980) q^{91} + ( - 56 \beta - 568) q^{92} + (284 \beta - 892) q^{93} + ( - 296 \beta - 432) q^{94} + (96 \beta - 32) q^{96} + (5 \beta - 417) q^{97} + (128 \beta - 270) q^{98} + ( - 104 \beta + 374) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 2 q^{3} + 8 q^{4} - 4 q^{6} - 8 q^{7} + 16 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{2} - 2 q^{3} + 8 q^{4} - 4 q^{6} - 8 q^{7} + 16 q^{8} + 2 q^{9} + 28 q^{11} - 8 q^{12} - 2 q^{13} - 16 q^{14} + 32 q^{16} - 152 q^{17} + 4 q^{18} - 38 q^{19} - 136 q^{21} + 56 q^{22} - 284 q^{23} - 16 q^{24} - 4 q^{26} - 56 q^{27} - 32 q^{28} + 144 q^{29} + 128 q^{31} + 64 q^{32} - 388 q^{33} - 304 q^{34} + 8 q^{36} + 194 q^{37} - 76 q^{38} + 740 q^{39} + 608 q^{41} - 272 q^{42} - 288 q^{43} + 112 q^{44} - 568 q^{46} - 432 q^{47} - 32 q^{48} - 270 q^{49} - 172 q^{51} - 8 q^{52} - 810 q^{53} - 112 q^{54} - 64 q^{56} + 38 q^{57} + 288 q^{58} + 324 q^{59} - 1076 q^{61} + 256 q^{62} + 280 q^{63} + 128 q^{64} - 776 q^{66} - 658 q^{67} - 608 q^{68} + 32 q^{69} - 1696 q^{71} + 16 q^{72} - 832 q^{73} + 388 q^{74} - 152 q^{76} + 848 q^{77} + 1480 q^{78} - 1428 q^{79} - 1294 q^{81} + 1216 q^{82} + 508 q^{83} - 544 q^{84} - 576 q^{86} + 540 q^{87} + 224 q^{88} + 576 q^{89} - 1960 q^{91} - 1136 q^{92} - 1784 q^{93} - 864 q^{94} - 64 q^{96} - 834 q^{97} - 540 q^{98} + 748 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
2.00000 −6.19615 4.00000 0 −12.3923 9.85641 8.00000 11.3923 0
1.2 2.00000 4.19615 4.00000 0 8.39230 −17.8564 8.00000 −9.39230 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 950.4.a.g 2
5.b even 2 1 190.4.a.e 2
5.c odd 4 2 950.4.b.e 4
15.d odd 2 1 1710.4.a.u 2
20.d odd 2 1 1520.4.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
190.4.a.e 2 5.b even 2 1
950.4.a.g 2 1.a even 1 1 trivial
950.4.b.e 4 5.c odd 4 2
1520.4.a.j 2 20.d odd 2 1
1710.4.a.u 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(950))\):

\( T_{3}^{2} + 2T_{3} - 26 \) Copy content Toggle raw display
\( T_{7}^{2} + 8T_{7} - 176 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 26 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 8T - 176 \) Copy content Toggle raw display
$11$ \( T^{2} - 28T - 1004 \) Copy content Toggle raw display
$13$ \( T^{2} + 2T - 5042 \) Copy content Toggle raw display
$17$ \( T^{2} + 152T + 4804 \) Copy content Toggle raw display
$19$ \( (T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 284T + 19576 \) Copy content Toggle raw display
$29$ \( T^{2} - 144T + 852 \) Copy content Toggle raw display
$31$ \( T^{2} - 128T - 21296 \) Copy content Toggle raw display
$37$ \( T^{2} - 194T + 3334 \) Copy content Toggle raw display
$41$ \( T^{2} - 608T + 75988 \) Copy content Toggle raw display
$43$ \( T^{2} + 288T + 16848 \) Copy content Toggle raw display
$47$ \( T^{2} + 432T - 19056 \) Copy content Toggle raw display
$53$ \( T^{2} + 810T + 155598 \) Copy content Toggle raw display
$59$ \( T^{2} - 324T - 77544 \) Copy content Toggle raw display
$61$ \( T^{2} + 1076 T + 244792 \) Copy content Toggle raw display
$67$ \( T^{2} + 658T + 59854 \) Copy content Toggle raw display
$71$ \( T^{2} + 1696 T + 717376 \) Copy content Toggle raw display
$73$ \( T^{2} + 832T - 39212 \) Copy content Toggle raw display
$79$ \( T^{2} + 1428 T + 236184 \) Copy content Toggle raw display
$83$ \( T^{2} - 508T - 294632 \) Copy content Toggle raw display
$89$ \( T^{2} - 576T - 961356 \) Copy content Toggle raw display
$97$ \( T^{2} + 834T + 173814 \) Copy content Toggle raw display
show more
show less