Properties

Label 950.4.a.d.1.1
Level $950$
Weight $4$
Character 950.1
Self dual yes
Analytic conductor $56.052$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [950,4,Mod(1,950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("950.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 950.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.0518145055\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 950.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +2.00000 q^{3} +4.00000 q^{4} +4.00000 q^{6} +31.0000 q^{7} +8.00000 q^{8} -23.0000 q^{9} +O(q^{10})\) \(q+2.00000 q^{2} +2.00000 q^{3} +4.00000 q^{4} +4.00000 q^{6} +31.0000 q^{7} +8.00000 q^{8} -23.0000 q^{9} +57.0000 q^{11} +8.00000 q^{12} +52.0000 q^{13} +62.0000 q^{14} +16.0000 q^{16} -69.0000 q^{17} -46.0000 q^{18} +19.0000 q^{19} +62.0000 q^{21} +114.000 q^{22} +72.0000 q^{23} +16.0000 q^{24} +104.000 q^{26} -100.000 q^{27} +124.000 q^{28} -150.000 q^{29} +32.0000 q^{31} +32.0000 q^{32} +114.000 q^{33} -138.000 q^{34} -92.0000 q^{36} +226.000 q^{37} +38.0000 q^{38} +104.000 q^{39} -258.000 q^{41} +124.000 q^{42} +67.0000 q^{43} +228.000 q^{44} +144.000 q^{46} -579.000 q^{47} +32.0000 q^{48} +618.000 q^{49} -138.000 q^{51} +208.000 q^{52} +432.000 q^{53} -200.000 q^{54} +248.000 q^{56} +38.0000 q^{57} -300.000 q^{58} -330.000 q^{59} -13.0000 q^{61} +64.0000 q^{62} -713.000 q^{63} +64.0000 q^{64} +228.000 q^{66} +856.000 q^{67} -276.000 q^{68} +144.000 q^{69} +642.000 q^{71} -184.000 q^{72} +487.000 q^{73} +452.000 q^{74} +76.0000 q^{76} +1767.00 q^{77} +208.000 q^{78} -700.000 q^{79} +421.000 q^{81} -516.000 q^{82} +12.0000 q^{83} +248.000 q^{84} +134.000 q^{86} -300.000 q^{87} +456.000 q^{88} -600.000 q^{89} +1612.00 q^{91} +288.000 q^{92} +64.0000 q^{93} -1158.00 q^{94} +64.0000 q^{96} -1424.00 q^{97} +1236.00 q^{98} -1311.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 2.00000 0.384900 0.192450 0.981307i \(-0.438357\pi\)
0.192450 + 0.981307i \(0.438357\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 4.00000 0.272166
\(7\) 31.0000 1.67384 0.836921 0.547323i \(-0.184353\pi\)
0.836921 + 0.547323i \(0.184353\pi\)
\(8\) 8.00000 0.353553
\(9\) −23.0000 −0.851852
\(10\) 0 0
\(11\) 57.0000 1.56238 0.781188 0.624295i \(-0.214614\pi\)
0.781188 + 0.624295i \(0.214614\pi\)
\(12\) 8.00000 0.192450
\(13\) 52.0000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 62.0000 1.18359
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −69.0000 −0.984409 −0.492205 0.870480i \(-0.663809\pi\)
−0.492205 + 0.870480i \(0.663809\pi\)
\(18\) −46.0000 −0.602350
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) 62.0000 0.644262
\(22\) 114.000 1.10477
\(23\) 72.0000 0.652741 0.326370 0.945242i \(-0.394174\pi\)
0.326370 + 0.945242i \(0.394174\pi\)
\(24\) 16.0000 0.136083
\(25\) 0 0
\(26\) 104.000 0.784465
\(27\) −100.000 −0.712778
\(28\) 124.000 0.836921
\(29\) −150.000 −0.960493 −0.480247 0.877134i \(-0.659453\pi\)
−0.480247 + 0.877134i \(0.659453\pi\)
\(30\) 0 0
\(31\) 32.0000 0.185399 0.0926995 0.995694i \(-0.470450\pi\)
0.0926995 + 0.995694i \(0.470450\pi\)
\(32\) 32.0000 0.176777
\(33\) 114.000 0.601359
\(34\) −138.000 −0.696082
\(35\) 0 0
\(36\) −92.0000 −0.425926
\(37\) 226.000 1.00417 0.502083 0.864819i \(-0.332567\pi\)
0.502083 + 0.864819i \(0.332567\pi\)
\(38\) 38.0000 0.162221
\(39\) 104.000 0.427008
\(40\) 0 0
\(41\) −258.000 −0.982752 −0.491376 0.870948i \(-0.663506\pi\)
−0.491376 + 0.870948i \(0.663506\pi\)
\(42\) 124.000 0.455562
\(43\) 67.0000 0.237614 0.118807 0.992917i \(-0.462093\pi\)
0.118807 + 0.992917i \(0.462093\pi\)
\(44\) 228.000 0.781188
\(45\) 0 0
\(46\) 144.000 0.461557
\(47\) −579.000 −1.79693 −0.898466 0.439043i \(-0.855318\pi\)
−0.898466 + 0.439043i \(0.855318\pi\)
\(48\) 32.0000 0.0962250
\(49\) 618.000 1.80175
\(50\) 0 0
\(51\) −138.000 −0.378899
\(52\) 208.000 0.554700
\(53\) 432.000 1.11962 0.559809 0.828622i \(-0.310874\pi\)
0.559809 + 0.828622i \(0.310874\pi\)
\(54\) −200.000 −0.504010
\(55\) 0 0
\(56\) 248.000 0.591793
\(57\) 38.0000 0.0883022
\(58\) −300.000 −0.679171
\(59\) −330.000 −0.728175 −0.364088 0.931365i \(-0.618619\pi\)
−0.364088 + 0.931365i \(0.618619\pi\)
\(60\) 0 0
\(61\) −13.0000 −0.0272865 −0.0136433 0.999907i \(-0.504343\pi\)
−0.0136433 + 0.999907i \(0.504343\pi\)
\(62\) 64.0000 0.131097
\(63\) −713.000 −1.42587
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 228.000 0.425225
\(67\) 856.000 1.56085 0.780426 0.625249i \(-0.215002\pi\)
0.780426 + 0.625249i \(0.215002\pi\)
\(68\) −276.000 −0.492205
\(69\) 144.000 0.251240
\(70\) 0 0
\(71\) 642.000 1.07312 0.536559 0.843863i \(-0.319724\pi\)
0.536559 + 0.843863i \(0.319724\pi\)
\(72\) −184.000 −0.301175
\(73\) 487.000 0.780809 0.390404 0.920643i \(-0.372335\pi\)
0.390404 + 0.920643i \(0.372335\pi\)
\(74\) 452.000 0.710053
\(75\) 0 0
\(76\) 76.0000 0.114708
\(77\) 1767.00 2.61517
\(78\) 208.000 0.301941
\(79\) −700.000 −0.996913 −0.498457 0.866915i \(-0.666100\pi\)
−0.498457 + 0.866915i \(0.666100\pi\)
\(80\) 0 0
\(81\) 421.000 0.577503
\(82\) −516.000 −0.694911
\(83\) 12.0000 0.0158695 0.00793477 0.999969i \(-0.497474\pi\)
0.00793477 + 0.999969i \(0.497474\pi\)
\(84\) 248.000 0.322131
\(85\) 0 0
\(86\) 134.000 0.168019
\(87\) −300.000 −0.369694
\(88\) 456.000 0.552384
\(89\) −600.000 −0.714605 −0.357303 0.933989i \(-0.616304\pi\)
−0.357303 + 0.933989i \(0.616304\pi\)
\(90\) 0 0
\(91\) 1612.00 1.85696
\(92\) 288.000 0.326370
\(93\) 64.0000 0.0713601
\(94\) −1158.00 −1.27062
\(95\) 0 0
\(96\) 64.0000 0.0680414
\(97\) −1424.00 −1.49057 −0.745285 0.666746i \(-0.767687\pi\)
−0.745285 + 0.666746i \(0.767687\pi\)
\(98\) 1236.00 1.27403
\(99\) −1311.00 −1.33091
\(100\) 0 0
\(101\) 1062.00 1.04627 0.523133 0.852251i \(-0.324763\pi\)
0.523133 + 0.852251i \(0.324763\pi\)
\(102\) −276.000 −0.267922
\(103\) −1178.00 −1.12691 −0.563455 0.826147i \(-0.690528\pi\)
−0.563455 + 0.826147i \(0.690528\pi\)
\(104\) 416.000 0.392232
\(105\) 0 0
\(106\) 864.000 0.791690
\(107\) −114.000 −0.102998 −0.0514990 0.998673i \(-0.516400\pi\)
−0.0514990 + 0.998673i \(0.516400\pi\)
\(108\) −400.000 −0.356389
\(109\) 1460.00 1.28296 0.641480 0.767140i \(-0.278321\pi\)
0.641480 + 0.767140i \(0.278321\pi\)
\(110\) 0 0
\(111\) 452.000 0.386504
\(112\) 496.000 0.418461
\(113\) 822.000 0.684312 0.342156 0.939643i \(-0.388843\pi\)
0.342156 + 0.939643i \(0.388843\pi\)
\(114\) 76.0000 0.0624391
\(115\) 0 0
\(116\) −600.000 −0.480247
\(117\) −1196.00 −0.945045
\(118\) −660.000 −0.514898
\(119\) −2139.00 −1.64775
\(120\) 0 0
\(121\) 1918.00 1.44102
\(122\) −26.0000 −0.0192945
\(123\) −516.000 −0.378261
\(124\) 128.000 0.0926995
\(125\) 0 0
\(126\) −1426.00 −1.00824
\(127\) 2086.00 1.45750 0.728750 0.684780i \(-0.240102\pi\)
0.728750 + 0.684780i \(0.240102\pi\)
\(128\) 128.000 0.0883883
\(129\) 134.000 0.0914577
\(130\) 0 0
\(131\) −93.0000 −0.0620263 −0.0310132 0.999519i \(-0.509873\pi\)
−0.0310132 + 0.999519i \(0.509873\pi\)
\(132\) 456.000 0.300680
\(133\) 589.000 0.384006
\(134\) 1712.00 1.10369
\(135\) 0 0
\(136\) −552.000 −0.348041
\(137\) −1269.00 −0.791372 −0.395686 0.918386i \(-0.629493\pi\)
−0.395686 + 0.918386i \(0.629493\pi\)
\(138\) 288.000 0.177654
\(139\) −1975.00 −1.20516 −0.602580 0.798058i \(-0.705861\pi\)
−0.602580 + 0.798058i \(0.705861\pi\)
\(140\) 0 0
\(141\) −1158.00 −0.691640
\(142\) 1284.00 0.758809
\(143\) 2964.00 1.73330
\(144\) −368.000 −0.212963
\(145\) 0 0
\(146\) 974.000 0.552115
\(147\) 1236.00 0.693494
\(148\) 904.000 0.502083
\(149\) −1695.00 −0.931945 −0.465973 0.884799i \(-0.654295\pi\)
−0.465973 + 0.884799i \(0.654295\pi\)
\(150\) 0 0
\(151\) 1802.00 0.971157 0.485578 0.874193i \(-0.338609\pi\)
0.485578 + 0.874193i \(0.338609\pi\)
\(152\) 152.000 0.0811107
\(153\) 1587.00 0.838571
\(154\) 3534.00 1.84921
\(155\) 0 0
\(156\) 416.000 0.213504
\(157\) 3226.00 1.63989 0.819945 0.572442i \(-0.194004\pi\)
0.819945 + 0.572442i \(0.194004\pi\)
\(158\) −1400.00 −0.704924
\(159\) 864.000 0.430941
\(160\) 0 0
\(161\) 2232.00 1.09259
\(162\) 842.000 0.408357
\(163\) −1268.00 −0.609309 −0.304655 0.952463i \(-0.598541\pi\)
−0.304655 + 0.952463i \(0.598541\pi\)
\(164\) −1032.00 −0.491376
\(165\) 0 0
\(166\) 24.0000 0.0112215
\(167\) −654.000 −0.303042 −0.151521 0.988454i \(-0.548417\pi\)
−0.151521 + 0.988454i \(0.548417\pi\)
\(168\) 496.000 0.227781
\(169\) 507.000 0.230769
\(170\) 0 0
\(171\) −437.000 −0.195428
\(172\) 268.000 0.118807
\(173\) 1362.00 0.598560 0.299280 0.954165i \(-0.403253\pi\)
0.299280 + 0.954165i \(0.403253\pi\)
\(174\) −600.000 −0.261413
\(175\) 0 0
\(176\) 912.000 0.390594
\(177\) −660.000 −0.280275
\(178\) −1200.00 −0.505302
\(179\) −210.000 −0.0876879 −0.0438440 0.999038i \(-0.513960\pi\)
−0.0438440 + 0.999038i \(0.513960\pi\)
\(180\) 0 0
\(181\) 2.00000 0.000821319 0 0.000410660 1.00000i \(-0.499869\pi\)
0.000410660 1.00000i \(0.499869\pi\)
\(182\) 3224.00 1.31307
\(183\) −26.0000 −0.0105026
\(184\) 576.000 0.230779
\(185\) 0 0
\(186\) 128.000 0.0504592
\(187\) −3933.00 −1.53802
\(188\) −2316.00 −0.898466
\(189\) −3100.00 −1.19308
\(190\) 0 0
\(191\) −2643.00 −1.00126 −0.500630 0.865661i \(-0.666898\pi\)
−0.500630 + 0.865661i \(0.666898\pi\)
\(192\) 128.000 0.0481125
\(193\) −3248.00 −1.21138 −0.605690 0.795701i \(-0.707103\pi\)
−0.605690 + 0.795701i \(0.707103\pi\)
\(194\) −2848.00 −1.05399
\(195\) 0 0
\(196\) 2472.00 0.900875
\(197\) 3126.00 1.13055 0.565275 0.824903i \(-0.308770\pi\)
0.565275 + 0.824903i \(0.308770\pi\)
\(198\) −2622.00 −0.941098
\(199\) −2995.00 −1.06688 −0.533442 0.845837i \(-0.679102\pi\)
−0.533442 + 0.845837i \(0.679102\pi\)
\(200\) 0 0
\(201\) 1712.00 0.600772
\(202\) 2124.00 0.739822
\(203\) −4650.00 −1.60771
\(204\) −552.000 −0.189450
\(205\) 0 0
\(206\) −2356.00 −0.796846
\(207\) −1656.00 −0.556038
\(208\) 832.000 0.277350
\(209\) 1083.00 0.358434
\(210\) 0 0
\(211\) −4318.00 −1.40883 −0.704416 0.709788i \(-0.748791\pi\)
−0.704416 + 0.709788i \(0.748791\pi\)
\(212\) 1728.00 0.559809
\(213\) 1284.00 0.413043
\(214\) −228.000 −0.0728307
\(215\) 0 0
\(216\) −800.000 −0.252005
\(217\) 992.000 0.310329
\(218\) 2920.00 0.907190
\(219\) 974.000 0.300533
\(220\) 0 0
\(221\) −3588.00 −1.09210
\(222\) 904.000 0.273300
\(223\) −518.000 −0.155551 −0.0777754 0.996971i \(-0.524782\pi\)
−0.0777754 + 0.996971i \(0.524782\pi\)
\(224\) 992.000 0.295896
\(225\) 0 0
\(226\) 1644.00 0.483882
\(227\) −2844.00 −0.831555 −0.415777 0.909466i \(-0.636490\pi\)
−0.415777 + 0.909466i \(0.636490\pi\)
\(228\) 152.000 0.0441511
\(229\) 1745.00 0.503550 0.251775 0.967786i \(-0.418986\pi\)
0.251775 + 0.967786i \(0.418986\pi\)
\(230\) 0 0
\(231\) 3534.00 1.00658
\(232\) −1200.00 −0.339586
\(233\) −5283.00 −1.48541 −0.742706 0.669618i \(-0.766458\pi\)
−0.742706 + 0.669618i \(0.766458\pi\)
\(234\) −2392.00 −0.668248
\(235\) 0 0
\(236\) −1320.00 −0.364088
\(237\) −1400.00 −0.383712
\(238\) −4278.00 −1.16513
\(239\) 465.000 0.125851 0.0629254 0.998018i \(-0.479957\pi\)
0.0629254 + 0.998018i \(0.479957\pi\)
\(240\) 0 0
\(241\) −7078.00 −1.89184 −0.945921 0.324396i \(-0.894839\pi\)
−0.945921 + 0.324396i \(0.894839\pi\)
\(242\) 3836.00 1.01896
\(243\) 3542.00 0.935059
\(244\) −52.0000 −0.0136433
\(245\) 0 0
\(246\) −1032.00 −0.267471
\(247\) 988.000 0.254514
\(248\) 256.000 0.0655485
\(249\) 24.0000 0.00610819
\(250\) 0 0
\(251\) 3567.00 0.897000 0.448500 0.893783i \(-0.351958\pi\)
0.448500 + 0.893783i \(0.351958\pi\)
\(252\) −2852.00 −0.712933
\(253\) 4104.00 1.01983
\(254\) 4172.00 1.03061
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1896.00 0.460192 0.230096 0.973168i \(-0.426096\pi\)
0.230096 + 0.973168i \(0.426096\pi\)
\(258\) 268.000 0.0646704
\(259\) 7006.00 1.68082
\(260\) 0 0
\(261\) 3450.00 0.818198
\(262\) −186.000 −0.0438592
\(263\) 57.0000 0.0133641 0.00668207 0.999978i \(-0.497873\pi\)
0.00668207 + 0.999978i \(0.497873\pi\)
\(264\) 912.000 0.212613
\(265\) 0 0
\(266\) 1178.00 0.271533
\(267\) −1200.00 −0.275052
\(268\) 3424.00 0.780426
\(269\) 2700.00 0.611977 0.305989 0.952035i \(-0.401013\pi\)
0.305989 + 0.952035i \(0.401013\pi\)
\(270\) 0 0
\(271\) 3872.00 0.867923 0.433962 0.900931i \(-0.357115\pi\)
0.433962 + 0.900931i \(0.357115\pi\)
\(272\) −1104.00 −0.246102
\(273\) 3224.00 0.714745
\(274\) −2538.00 −0.559585
\(275\) 0 0
\(276\) 576.000 0.125620
\(277\) 7711.00 1.67260 0.836298 0.548275i \(-0.184715\pi\)
0.836298 + 0.548275i \(0.184715\pi\)
\(278\) −3950.00 −0.852177
\(279\) −736.000 −0.157932
\(280\) 0 0
\(281\) −6858.00 −1.45592 −0.727961 0.685619i \(-0.759532\pi\)
−0.727961 + 0.685619i \(0.759532\pi\)
\(282\) −2316.00 −0.489063
\(283\) 1807.00 0.379558 0.189779 0.981827i \(-0.439223\pi\)
0.189779 + 0.981827i \(0.439223\pi\)
\(284\) 2568.00 0.536559
\(285\) 0 0
\(286\) 5928.00 1.22563
\(287\) −7998.00 −1.64497
\(288\) −736.000 −0.150588
\(289\) −152.000 −0.0309383
\(290\) 0 0
\(291\) −2848.00 −0.573721
\(292\) 1948.00 0.390404
\(293\) 3012.00 0.600556 0.300278 0.953852i \(-0.402921\pi\)
0.300278 + 0.953852i \(0.402921\pi\)
\(294\) 2472.00 0.490374
\(295\) 0 0
\(296\) 1808.00 0.355027
\(297\) −5700.00 −1.11363
\(298\) −3390.00 −0.658985
\(299\) 3744.00 0.724151
\(300\) 0 0
\(301\) 2077.00 0.397729
\(302\) 3604.00 0.686712
\(303\) 2124.00 0.402708
\(304\) 304.000 0.0573539
\(305\) 0 0
\(306\) 3174.00 0.592959
\(307\) 1096.00 0.203753 0.101876 0.994797i \(-0.467515\pi\)
0.101876 + 0.994797i \(0.467515\pi\)
\(308\) 7068.00 1.30759
\(309\) −2356.00 −0.433748
\(310\) 0 0
\(311\) 1947.00 0.354998 0.177499 0.984121i \(-0.443199\pi\)
0.177499 + 0.984121i \(0.443199\pi\)
\(312\) 832.000 0.150970
\(313\) −7598.00 −1.37209 −0.686045 0.727559i \(-0.740655\pi\)
−0.686045 + 0.727559i \(0.740655\pi\)
\(314\) 6452.00 1.15958
\(315\) 0 0
\(316\) −2800.00 −0.498457
\(317\) −8334.00 −1.47661 −0.738303 0.674469i \(-0.764373\pi\)
−0.738303 + 0.674469i \(0.764373\pi\)
\(318\) 1728.00 0.304721
\(319\) −8550.00 −1.50065
\(320\) 0 0
\(321\) −228.000 −0.0396440
\(322\) 4464.00 0.772575
\(323\) −1311.00 −0.225839
\(324\) 1684.00 0.288752
\(325\) 0 0
\(326\) −2536.00 −0.430847
\(327\) 2920.00 0.493812
\(328\) −2064.00 −0.347455
\(329\) −17949.0 −3.00778
\(330\) 0 0
\(331\) −8368.00 −1.38957 −0.694784 0.719219i \(-0.744500\pi\)
−0.694784 + 0.719219i \(0.744500\pi\)
\(332\) 48.0000 0.00793477
\(333\) −5198.00 −0.855401
\(334\) −1308.00 −0.214283
\(335\) 0 0
\(336\) 992.000 0.161066
\(337\) 10336.0 1.67074 0.835368 0.549692i \(-0.185255\pi\)
0.835368 + 0.549692i \(0.185255\pi\)
\(338\) 1014.00 0.163178
\(339\) 1644.00 0.263392
\(340\) 0 0
\(341\) 1824.00 0.289663
\(342\) −874.000 −0.138189
\(343\) 8525.00 1.34200
\(344\) 536.000 0.0840093
\(345\) 0 0
\(346\) 2724.00 0.423246
\(347\) −6879.00 −1.06422 −0.532110 0.846675i \(-0.678601\pi\)
−0.532110 + 0.846675i \(0.678601\pi\)
\(348\) −1200.00 −0.184847
\(349\) −6355.00 −0.974714 −0.487357 0.873203i \(-0.662039\pi\)
−0.487357 + 0.873203i \(0.662039\pi\)
\(350\) 0 0
\(351\) −5200.00 −0.790756
\(352\) 1824.00 0.276192
\(353\) −7218.00 −1.08832 −0.544158 0.838983i \(-0.683151\pi\)
−0.544158 + 0.838983i \(0.683151\pi\)
\(354\) −1320.00 −0.198184
\(355\) 0 0
\(356\) −2400.00 −0.357303
\(357\) −4278.00 −0.634218
\(358\) −420.000 −0.0620047
\(359\) 1665.00 0.244778 0.122389 0.992482i \(-0.460944\pi\)
0.122389 + 0.992482i \(0.460944\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 4.00000 0.000580761 0
\(363\) 3836.00 0.554650
\(364\) 6448.00 0.928481
\(365\) 0 0
\(366\) −52.0000 −0.00742646
\(367\) −13064.0 −1.85813 −0.929067 0.369911i \(-0.879388\pi\)
−0.929067 + 0.369911i \(0.879388\pi\)
\(368\) 1152.00 0.163185
\(369\) 5934.00 0.837159
\(370\) 0 0
\(371\) 13392.0 1.87406
\(372\) 256.000 0.0356801
\(373\) 10492.0 1.45645 0.728224 0.685339i \(-0.240346\pi\)
0.728224 + 0.685339i \(0.240346\pi\)
\(374\) −7866.00 −1.08754
\(375\) 0 0
\(376\) −4632.00 −0.635312
\(377\) −7800.00 −1.06557
\(378\) −6200.00 −0.843634
\(379\) 7610.00 1.03140 0.515698 0.856770i \(-0.327532\pi\)
0.515698 + 0.856770i \(0.327532\pi\)
\(380\) 0 0
\(381\) 4172.00 0.560992
\(382\) −5286.00 −0.707998
\(383\) −4008.00 −0.534724 −0.267362 0.963596i \(-0.586152\pi\)
−0.267362 + 0.963596i \(0.586152\pi\)
\(384\) 256.000 0.0340207
\(385\) 0 0
\(386\) −6496.00 −0.856574
\(387\) −1541.00 −0.202412
\(388\) −5696.00 −0.745285
\(389\) −3525.00 −0.459446 −0.229723 0.973256i \(-0.573782\pi\)
−0.229723 + 0.973256i \(0.573782\pi\)
\(390\) 0 0
\(391\) −4968.00 −0.642564
\(392\) 4944.00 0.637015
\(393\) −186.000 −0.0238739
\(394\) 6252.00 0.799419
\(395\) 0 0
\(396\) −5244.00 −0.665457
\(397\) −6629.00 −0.838035 −0.419018 0.907978i \(-0.637625\pi\)
−0.419018 + 0.907978i \(0.637625\pi\)
\(398\) −5990.00 −0.754401
\(399\) 1178.00 0.147804
\(400\) 0 0
\(401\) −10848.0 −1.35093 −0.675465 0.737392i \(-0.736057\pi\)
−0.675465 + 0.737392i \(0.736057\pi\)
\(402\) 3424.00 0.424810
\(403\) 1664.00 0.205682
\(404\) 4248.00 0.523133
\(405\) 0 0
\(406\) −9300.00 −1.13683
\(407\) 12882.0 1.56889
\(408\) −1104.00 −0.133961
\(409\) −3040.00 −0.367526 −0.183763 0.982971i \(-0.558828\pi\)
−0.183763 + 0.982971i \(0.558828\pi\)
\(410\) 0 0
\(411\) −2538.00 −0.304599
\(412\) −4712.00 −0.563455
\(413\) −10230.0 −1.21885
\(414\) −3312.00 −0.393179
\(415\) 0 0
\(416\) 1664.00 0.196116
\(417\) −3950.00 −0.463867
\(418\) 2166.00 0.253451
\(419\) −3900.00 −0.454719 −0.227360 0.973811i \(-0.573009\pi\)
−0.227360 + 0.973811i \(0.573009\pi\)
\(420\) 0 0
\(421\) 4412.00 0.510755 0.255377 0.966841i \(-0.417800\pi\)
0.255377 + 0.966841i \(0.417800\pi\)
\(422\) −8636.00 −0.996194
\(423\) 13317.0 1.53072
\(424\) 3456.00 0.395845
\(425\) 0 0
\(426\) 2568.00 0.292066
\(427\) −403.000 −0.0456734
\(428\) −456.000 −0.0514990
\(429\) 5928.00 0.667148
\(430\) 0 0
\(431\) 432.000 0.0482801 0.0241400 0.999709i \(-0.492315\pi\)
0.0241400 + 0.999709i \(0.492315\pi\)
\(432\) −1600.00 −0.178195
\(433\) 2002.00 0.222194 0.111097 0.993810i \(-0.464564\pi\)
0.111097 + 0.993810i \(0.464564\pi\)
\(434\) 1984.00 0.219436
\(435\) 0 0
\(436\) 5840.00 0.641480
\(437\) 1368.00 0.149749
\(438\) 1948.00 0.212509
\(439\) −1690.00 −0.183734 −0.0918671 0.995771i \(-0.529283\pi\)
−0.0918671 + 0.995771i \(0.529283\pi\)
\(440\) 0 0
\(441\) −14214.0 −1.53482
\(442\) −7176.00 −0.772234
\(443\) 1977.00 0.212032 0.106016 0.994364i \(-0.466191\pi\)
0.106016 + 0.994364i \(0.466191\pi\)
\(444\) 1808.00 0.193252
\(445\) 0 0
\(446\) −1036.00 −0.109991
\(447\) −3390.00 −0.358706
\(448\) 1984.00 0.209230
\(449\) −2760.00 −0.290095 −0.145047 0.989425i \(-0.546333\pi\)
−0.145047 + 0.989425i \(0.546333\pi\)
\(450\) 0 0
\(451\) −14706.0 −1.53543
\(452\) 3288.00 0.342156
\(453\) 3604.00 0.373798
\(454\) −5688.00 −0.587998
\(455\) 0 0
\(456\) 304.000 0.0312195
\(457\) −4499.00 −0.460513 −0.230256 0.973130i \(-0.573956\pi\)
−0.230256 + 0.973130i \(0.573956\pi\)
\(458\) 3490.00 0.356063
\(459\) 6900.00 0.701665
\(460\) 0 0
\(461\) −11643.0 −1.17629 −0.588144 0.808756i \(-0.700141\pi\)
−0.588144 + 0.808756i \(0.700141\pi\)
\(462\) 7068.00 0.711760
\(463\) 1537.00 0.154277 0.0771387 0.997020i \(-0.475422\pi\)
0.0771387 + 0.997020i \(0.475422\pi\)
\(464\) −2400.00 −0.240123
\(465\) 0 0
\(466\) −10566.0 −1.05034
\(467\) 7641.00 0.757138 0.378569 0.925573i \(-0.376416\pi\)
0.378569 + 0.925573i \(0.376416\pi\)
\(468\) −4784.00 −0.472522
\(469\) 26536.0 2.61262
\(470\) 0 0
\(471\) 6452.00 0.631194
\(472\) −2640.00 −0.257449
\(473\) 3819.00 0.371243
\(474\) −2800.00 −0.271325
\(475\) 0 0
\(476\) −8556.00 −0.823873
\(477\) −9936.00 −0.953749
\(478\) 930.000 0.0889900
\(479\) −8580.00 −0.818435 −0.409217 0.912437i \(-0.634198\pi\)
−0.409217 + 0.912437i \(0.634198\pi\)
\(480\) 0 0
\(481\) 11752.0 1.11402
\(482\) −14156.0 −1.33773
\(483\) 4464.00 0.420536
\(484\) 7672.00 0.720511
\(485\) 0 0
\(486\) 7084.00 0.661187
\(487\) −12134.0 −1.12904 −0.564522 0.825418i \(-0.690939\pi\)
−0.564522 + 0.825418i \(0.690939\pi\)
\(488\) −104.000 −0.00964725
\(489\) −2536.00 −0.234523
\(490\) 0 0
\(491\) −5508.00 −0.506258 −0.253129 0.967433i \(-0.581460\pi\)
−0.253129 + 0.967433i \(0.581460\pi\)
\(492\) −2064.00 −0.189131
\(493\) 10350.0 0.945518
\(494\) 1976.00 0.179969
\(495\) 0 0
\(496\) 512.000 0.0463498
\(497\) 19902.0 1.79623
\(498\) 48.0000 0.00431914
\(499\) −11905.0 −1.06802 −0.534009 0.845479i \(-0.679315\pi\)
−0.534009 + 0.845479i \(0.679315\pi\)
\(500\) 0 0
\(501\) −1308.00 −0.116641
\(502\) 7134.00 0.634275
\(503\) −9108.00 −0.807367 −0.403684 0.914899i \(-0.632270\pi\)
−0.403684 + 0.914899i \(0.632270\pi\)
\(504\) −5704.00 −0.504120
\(505\) 0 0
\(506\) 8208.00 0.721127
\(507\) 1014.00 0.0888231
\(508\) 8344.00 0.728750
\(509\) −2520.00 −0.219444 −0.109722 0.993962i \(-0.534996\pi\)
−0.109722 + 0.993962i \(0.534996\pi\)
\(510\) 0 0
\(511\) 15097.0 1.30695
\(512\) 512.000 0.0441942
\(513\) −1900.00 −0.163523
\(514\) 3792.00 0.325405
\(515\) 0 0
\(516\) 536.000 0.0457288
\(517\) −33003.0 −2.80749
\(518\) 14012.0 1.18852
\(519\) 2724.00 0.230386
\(520\) 0 0
\(521\) 21612.0 1.81735 0.908675 0.417505i \(-0.137095\pi\)
0.908675 + 0.417505i \(0.137095\pi\)
\(522\) 6900.00 0.578553
\(523\) 9022.00 0.754311 0.377155 0.926150i \(-0.376902\pi\)
0.377155 + 0.926150i \(0.376902\pi\)
\(524\) −372.000 −0.0310132
\(525\) 0 0
\(526\) 114.000 0.00944988
\(527\) −2208.00 −0.182509
\(528\) 1824.00 0.150340
\(529\) −6983.00 −0.573929
\(530\) 0 0
\(531\) 7590.00 0.620297
\(532\) 2356.00 0.192003
\(533\) −13416.0 −1.09027
\(534\) −2400.00 −0.194491
\(535\) 0 0
\(536\) 6848.00 0.551844
\(537\) −420.000 −0.0337511
\(538\) 5400.00 0.432733
\(539\) 35226.0 2.81501
\(540\) 0 0
\(541\) −9253.00 −0.735337 −0.367669 0.929957i \(-0.619844\pi\)
−0.367669 + 0.929957i \(0.619844\pi\)
\(542\) 7744.00 0.613715
\(543\) 4.00000 0.000316126 0
\(544\) −2208.00 −0.174021
\(545\) 0 0
\(546\) 6448.00 0.505401
\(547\) −13244.0 −1.03523 −0.517617 0.855613i \(-0.673181\pi\)
−0.517617 + 0.855613i \(0.673181\pi\)
\(548\) −5076.00 −0.395686
\(549\) 299.000 0.0232441
\(550\) 0 0
\(551\) −2850.00 −0.220352
\(552\) 1152.00 0.0888268
\(553\) −21700.0 −1.66868
\(554\) 15422.0 1.18270
\(555\) 0 0
\(556\) −7900.00 −0.602580
\(557\) −1569.00 −0.119355 −0.0596774 0.998218i \(-0.519007\pi\)
−0.0596774 + 0.998218i \(0.519007\pi\)
\(558\) −1472.00 −0.111675
\(559\) 3484.00 0.263609
\(560\) 0 0
\(561\) −7866.00 −0.591984
\(562\) −13716.0 −1.02949
\(563\) 15762.0 1.17991 0.589955 0.807436i \(-0.299146\pi\)
0.589955 + 0.807436i \(0.299146\pi\)
\(564\) −4632.00 −0.345820
\(565\) 0 0
\(566\) 3614.00 0.268388
\(567\) 13051.0 0.966650
\(568\) 5136.00 0.379405
\(569\) −13800.0 −1.01674 −0.508371 0.861138i \(-0.669752\pi\)
−0.508371 + 0.861138i \(0.669752\pi\)
\(570\) 0 0
\(571\) −4348.00 −0.318666 −0.159333 0.987225i \(-0.550934\pi\)
−0.159333 + 0.987225i \(0.550934\pi\)
\(572\) 11856.0 0.866651
\(573\) −5286.00 −0.385385
\(574\) −15996.0 −1.16317
\(575\) 0 0
\(576\) −1472.00 −0.106481
\(577\) −3539.00 −0.255339 −0.127669 0.991817i \(-0.540750\pi\)
−0.127669 + 0.991817i \(0.540750\pi\)
\(578\) −304.000 −0.0218767
\(579\) −6496.00 −0.466260
\(580\) 0 0
\(581\) 372.000 0.0265631
\(582\) −5696.00 −0.405682
\(583\) 24624.0 1.74927
\(584\) 3896.00 0.276058
\(585\) 0 0
\(586\) 6024.00 0.424657
\(587\) 6321.00 0.444456 0.222228 0.974995i \(-0.428667\pi\)
0.222228 + 0.974995i \(0.428667\pi\)
\(588\) 4944.00 0.346747
\(589\) 608.000 0.0425335
\(590\) 0 0
\(591\) 6252.00 0.435149
\(592\) 3616.00 0.251042
\(593\) −13278.0 −0.919498 −0.459749 0.888049i \(-0.652061\pi\)
−0.459749 + 0.888049i \(0.652061\pi\)
\(594\) −11400.0 −0.787454
\(595\) 0 0
\(596\) −6780.00 −0.465973
\(597\) −5990.00 −0.410644
\(598\) 7488.00 0.512052
\(599\) 20400.0 1.39152 0.695761 0.718274i \(-0.255067\pi\)
0.695761 + 0.718274i \(0.255067\pi\)
\(600\) 0 0
\(601\) −22198.0 −1.50661 −0.753307 0.657669i \(-0.771543\pi\)
−0.753307 + 0.657669i \(0.771543\pi\)
\(602\) 4154.00 0.281237
\(603\) −19688.0 −1.32961
\(604\) 7208.00 0.485578
\(605\) 0 0
\(606\) 4248.00 0.284758
\(607\) −9824.00 −0.656909 −0.328455 0.944520i \(-0.606528\pi\)
−0.328455 + 0.944520i \(0.606528\pi\)
\(608\) 608.000 0.0405554
\(609\) −9300.00 −0.618810
\(610\) 0 0
\(611\) −30108.0 −1.99352
\(612\) 6348.00 0.419285
\(613\) 4327.00 0.285099 0.142550 0.989788i \(-0.454470\pi\)
0.142550 + 0.989788i \(0.454470\pi\)
\(614\) 2192.00 0.144075
\(615\) 0 0
\(616\) 14136.0 0.924603
\(617\) 14151.0 0.923335 0.461668 0.887053i \(-0.347251\pi\)
0.461668 + 0.887053i \(0.347251\pi\)
\(618\) −4712.00 −0.306706
\(619\) 22460.0 1.45839 0.729195 0.684306i \(-0.239895\pi\)
0.729195 + 0.684306i \(0.239895\pi\)
\(620\) 0 0
\(621\) −7200.00 −0.465259
\(622\) 3894.00 0.251021
\(623\) −18600.0 −1.19614
\(624\) 1664.00 0.106752
\(625\) 0 0
\(626\) −15196.0 −0.970215
\(627\) 2166.00 0.137961
\(628\) 12904.0 0.819945
\(629\) −15594.0 −0.988511
\(630\) 0 0
\(631\) −16363.0 −1.03233 −0.516165 0.856489i \(-0.672641\pi\)
−0.516165 + 0.856489i \(0.672641\pi\)
\(632\) −5600.00 −0.352462
\(633\) −8636.00 −0.542259
\(634\) −16668.0 −1.04412
\(635\) 0 0
\(636\) 3456.00 0.215471
\(637\) 32136.0 1.99886
\(638\) −17100.0 −1.06112
\(639\) −14766.0 −0.914138
\(640\) 0 0
\(641\) 5592.00 0.344572 0.172286 0.985047i \(-0.444885\pi\)
0.172286 + 0.985047i \(0.444885\pi\)
\(642\) −456.000 −0.0280325
\(643\) −16553.0 −1.01522 −0.507610 0.861587i \(-0.669471\pi\)
−0.507610 + 0.861587i \(0.669471\pi\)
\(644\) 8928.00 0.546293
\(645\) 0 0
\(646\) −2622.00 −0.159692
\(647\) 4611.00 0.280181 0.140091 0.990139i \(-0.455261\pi\)
0.140091 + 0.990139i \(0.455261\pi\)
\(648\) 3368.00 0.204178
\(649\) −18810.0 −1.13768
\(650\) 0 0
\(651\) 1984.00 0.119446
\(652\) −5072.00 −0.304655
\(653\) −16413.0 −0.983599 −0.491800 0.870708i \(-0.663661\pi\)
−0.491800 + 0.870708i \(0.663661\pi\)
\(654\) 5840.00 0.349177
\(655\) 0 0
\(656\) −4128.00 −0.245688
\(657\) −11201.0 −0.665133
\(658\) −35898.0 −2.12682
\(659\) 27390.0 1.61906 0.809532 0.587076i \(-0.199721\pi\)
0.809532 + 0.587076i \(0.199721\pi\)
\(660\) 0 0
\(661\) 26912.0 1.58359 0.791797 0.610784i \(-0.209146\pi\)
0.791797 + 0.610784i \(0.209146\pi\)
\(662\) −16736.0 −0.982573
\(663\) −7176.00 −0.420351
\(664\) 96.0000 0.00561073
\(665\) 0 0
\(666\) −10396.0 −0.604860
\(667\) −10800.0 −0.626953
\(668\) −2616.00 −0.151521
\(669\) −1036.00 −0.0598716
\(670\) 0 0
\(671\) −741.000 −0.0426319
\(672\) 1984.00 0.113891
\(673\) 21562.0 1.23500 0.617499 0.786571i \(-0.288146\pi\)
0.617499 + 0.786571i \(0.288146\pi\)
\(674\) 20672.0 1.18139
\(675\) 0 0
\(676\) 2028.00 0.115385
\(677\) 21966.0 1.24700 0.623502 0.781822i \(-0.285709\pi\)
0.623502 + 0.781822i \(0.285709\pi\)
\(678\) 3288.00 0.186246
\(679\) −44144.0 −2.49498
\(680\) 0 0
\(681\) −5688.00 −0.320066
\(682\) 3648.00 0.204823
\(683\) −15348.0 −0.859846 −0.429923 0.902866i \(-0.641459\pi\)
−0.429923 + 0.902866i \(0.641459\pi\)
\(684\) −1748.00 −0.0977141
\(685\) 0 0
\(686\) 17050.0 0.948939
\(687\) 3490.00 0.193816
\(688\) 1072.00 0.0594035
\(689\) 22464.0 1.24210
\(690\) 0 0
\(691\) 8147.00 0.448519 0.224259 0.974529i \(-0.428004\pi\)
0.224259 + 0.974529i \(0.428004\pi\)
\(692\) 5448.00 0.299280
\(693\) −40641.0 −2.22774
\(694\) −13758.0 −0.752517
\(695\) 0 0
\(696\) −2400.00 −0.130707
\(697\) 17802.0 0.967430
\(698\) −12710.0 −0.689227
\(699\) −10566.0 −0.571735
\(700\) 0 0
\(701\) 14982.0 0.807222 0.403611 0.914931i \(-0.367755\pi\)
0.403611 + 0.914931i \(0.367755\pi\)
\(702\) −10400.0 −0.559149
\(703\) 4294.00 0.230372
\(704\) 3648.00 0.195297
\(705\) 0 0
\(706\) −14436.0 −0.769555
\(707\) 32922.0 1.75129
\(708\) −2640.00 −0.140137
\(709\) 21890.0 1.15952 0.579758 0.814789i \(-0.303147\pi\)
0.579758 + 0.814789i \(0.303147\pi\)
\(710\) 0 0
\(711\) 16100.0 0.849222
\(712\) −4800.00 −0.252651
\(713\) 2304.00 0.121018
\(714\) −8556.00 −0.448460
\(715\) 0 0
\(716\) −840.000 −0.0438440
\(717\) 930.000 0.0484400
\(718\) 3330.00 0.173084
\(719\) −27015.0 −1.40124 −0.700619 0.713536i \(-0.747093\pi\)
−0.700619 + 0.713536i \(0.747093\pi\)
\(720\) 0 0
\(721\) −36518.0 −1.88627
\(722\) 722.000 0.0372161
\(723\) −14156.0 −0.728171
\(724\) 8.00000 0.000410660 0
\(725\) 0 0
\(726\) 7672.00 0.392196
\(727\) 13021.0 0.664267 0.332134 0.943232i \(-0.392232\pi\)
0.332134 + 0.943232i \(0.392232\pi\)
\(728\) 12896.0 0.656535
\(729\) −4283.00 −0.217599
\(730\) 0 0
\(731\) −4623.00 −0.233909
\(732\) −104.000 −0.00525130
\(733\) 6262.00 0.315542 0.157771 0.987476i \(-0.449569\pi\)
0.157771 + 0.987476i \(0.449569\pi\)
\(734\) −26128.0 −1.31390
\(735\) 0 0
\(736\) 2304.00 0.115389
\(737\) 48792.0 2.43864
\(738\) 11868.0 0.591961
\(739\) −10855.0 −0.540335 −0.270168 0.962813i \(-0.587079\pi\)
−0.270168 + 0.962813i \(0.587079\pi\)
\(740\) 0 0
\(741\) 1976.00 0.0979624
\(742\) 26784.0 1.32516
\(743\) 14892.0 0.735309 0.367654 0.929962i \(-0.380161\pi\)
0.367654 + 0.929962i \(0.380161\pi\)
\(744\) 512.000 0.0252296
\(745\) 0 0
\(746\) 20984.0 1.02986
\(747\) −276.000 −0.0135185
\(748\) −15732.0 −0.769009
\(749\) −3534.00 −0.172403
\(750\) 0 0
\(751\) 28952.0 1.40676 0.703378 0.710816i \(-0.251674\pi\)
0.703378 + 0.710816i \(0.251674\pi\)
\(752\) −9264.00 −0.449233
\(753\) 7134.00 0.345256
\(754\) −15600.0 −0.753473
\(755\) 0 0
\(756\) −12400.0 −0.596539
\(757\) 3541.00 0.170013 0.0850065 0.996380i \(-0.472909\pi\)
0.0850065 + 0.996380i \(0.472909\pi\)
\(758\) 15220.0 0.729308
\(759\) 8208.00 0.392532
\(760\) 0 0
\(761\) 22617.0 1.07735 0.538676 0.842513i \(-0.318925\pi\)
0.538676 + 0.842513i \(0.318925\pi\)
\(762\) 8344.00 0.396681
\(763\) 45260.0 2.14747
\(764\) −10572.0 −0.500630
\(765\) 0 0
\(766\) −8016.00 −0.378107
\(767\) −17160.0 −0.807838
\(768\) 512.000 0.0240563
\(769\) 11495.0 0.539038 0.269519 0.962995i \(-0.413135\pi\)
0.269519 + 0.962995i \(0.413135\pi\)
\(770\) 0 0
\(771\) 3792.00 0.177128
\(772\) −12992.0 −0.605690
\(773\) 14622.0 0.680358 0.340179 0.940361i \(-0.389512\pi\)
0.340179 + 0.940361i \(0.389512\pi\)
\(774\) −3082.00 −0.143127
\(775\) 0 0
\(776\) −11392.0 −0.526996
\(777\) 14012.0 0.646947
\(778\) −7050.00 −0.324878
\(779\) −4902.00 −0.225459
\(780\) 0 0
\(781\) 36594.0 1.67661
\(782\) −9936.00 −0.454361
\(783\) 15000.0 0.684618
\(784\) 9888.00 0.450437
\(785\) 0 0
\(786\) −372.000 −0.0168814
\(787\) −7124.00 −0.322672 −0.161336 0.986900i \(-0.551580\pi\)
−0.161336 + 0.986900i \(0.551580\pi\)
\(788\) 12504.0 0.565275
\(789\) 114.000 0.00514386
\(790\) 0 0
\(791\) 25482.0 1.14543
\(792\) −10488.0 −0.470549
\(793\) −676.000 −0.0302717
\(794\) −13258.0 −0.592580
\(795\) 0 0
\(796\) −11980.0 −0.533442
\(797\) 3576.00 0.158932 0.0794658 0.996838i \(-0.474679\pi\)
0.0794658 + 0.996838i \(0.474679\pi\)
\(798\) 2356.00 0.104513
\(799\) 39951.0 1.76892
\(800\) 0 0
\(801\) 13800.0 0.608738
\(802\) −21696.0 −0.955252
\(803\) 27759.0 1.21992
\(804\) 6848.00 0.300386
\(805\) 0 0
\(806\) 3328.00 0.145439
\(807\) 5400.00 0.235550
\(808\) 8496.00 0.369911
\(809\) 42855.0 1.86242 0.931212 0.364477i \(-0.118752\pi\)
0.931212 + 0.364477i \(0.118752\pi\)
\(810\) 0 0
\(811\) −15568.0 −0.674065 −0.337032 0.941493i \(-0.609423\pi\)
−0.337032 + 0.941493i \(0.609423\pi\)
\(812\) −18600.0 −0.803857
\(813\) 7744.00 0.334064
\(814\) 25764.0 1.10937
\(815\) 0 0
\(816\) −2208.00 −0.0947248
\(817\) 1273.00 0.0545124
\(818\) −6080.00 −0.259880
\(819\) −37076.0 −1.58186
\(820\) 0 0
\(821\) 2517.00 0.106996 0.0534981 0.998568i \(-0.482963\pi\)
0.0534981 + 0.998568i \(0.482963\pi\)
\(822\) −5076.00 −0.215384
\(823\) 9727.00 0.411983 0.205991 0.978554i \(-0.433958\pi\)
0.205991 + 0.978554i \(0.433958\pi\)
\(824\) −9424.00 −0.398423
\(825\) 0 0
\(826\) −20460.0 −0.861858
\(827\) −28224.0 −1.18675 −0.593376 0.804925i \(-0.702205\pi\)
−0.593376 + 0.804925i \(0.702205\pi\)
\(828\) −6624.00 −0.278019
\(829\) 3080.00 0.129038 0.0645192 0.997916i \(-0.479449\pi\)
0.0645192 + 0.997916i \(0.479449\pi\)
\(830\) 0 0
\(831\) 15422.0 0.643782
\(832\) 3328.00 0.138675
\(833\) −42642.0 −1.77366
\(834\) −7900.00 −0.328003
\(835\) 0 0
\(836\) 4332.00 0.179217
\(837\) −3200.00 −0.132148
\(838\) −7800.00 −0.321535
\(839\) 26790.0 1.10238 0.551188 0.834381i \(-0.314175\pi\)
0.551188 + 0.834381i \(0.314175\pi\)
\(840\) 0 0
\(841\) −1889.00 −0.0774530
\(842\) 8824.00 0.361158
\(843\) −13716.0 −0.560385
\(844\) −17272.0 −0.704416
\(845\) 0 0
\(846\) 26634.0 1.08238
\(847\) 59458.0 2.41204
\(848\) 6912.00 0.279905
\(849\) 3614.00 0.146092
\(850\) 0 0
\(851\) 16272.0 0.655461
\(852\) 5136.00 0.206522
\(853\) −19178.0 −0.769803 −0.384902 0.922958i \(-0.625765\pi\)
−0.384902 + 0.922958i \(0.625765\pi\)
\(854\) −806.000 −0.0322960
\(855\) 0 0
\(856\) −912.000 −0.0364153
\(857\) 2406.00 0.0959013 0.0479506 0.998850i \(-0.484731\pi\)
0.0479506 + 0.998850i \(0.484731\pi\)
\(858\) 11856.0 0.471745
\(859\) 9125.00 0.362446 0.181223 0.983442i \(-0.441994\pi\)
0.181223 + 0.983442i \(0.441994\pi\)
\(860\) 0 0
\(861\) −15996.0 −0.633150
\(862\) 864.000 0.0341392
\(863\) −8898.00 −0.350975 −0.175488 0.984482i \(-0.556150\pi\)
−0.175488 + 0.984482i \(0.556150\pi\)
\(864\) −3200.00 −0.126003
\(865\) 0 0
\(866\) 4004.00 0.157115
\(867\) −304.000 −0.0119082
\(868\) 3968.00 0.155164
\(869\) −39900.0 −1.55755
\(870\) 0 0
\(871\) 44512.0 1.73161
\(872\) 11680.0 0.453595
\(873\) 32752.0 1.26974
\(874\) 2736.00 0.105889
\(875\) 0 0
\(876\) 3896.00 0.150267
\(877\) 15886.0 0.611667 0.305834 0.952085i \(-0.401065\pi\)
0.305834 + 0.952085i \(0.401065\pi\)
\(878\) −3380.00 −0.129920
\(879\) 6024.00 0.231154
\(880\) 0 0
\(881\) −25683.0 −0.982159 −0.491080 0.871115i \(-0.663398\pi\)
−0.491080 + 0.871115i \(0.663398\pi\)
\(882\) −28428.0 −1.08528
\(883\) 28267.0 1.07730 0.538652 0.842528i \(-0.318934\pi\)
0.538652 + 0.842528i \(0.318934\pi\)
\(884\) −14352.0 −0.546052
\(885\) 0 0
\(886\) 3954.00 0.149929
\(887\) 2466.00 0.0933486 0.0466743 0.998910i \(-0.485138\pi\)
0.0466743 + 0.998910i \(0.485138\pi\)
\(888\) 3616.00 0.136650
\(889\) 64666.0 2.43963
\(890\) 0 0
\(891\) 23997.0 0.902278
\(892\) −2072.00 −0.0777754
\(893\) −11001.0 −0.412245
\(894\) −6780.00 −0.253643
\(895\) 0 0
\(896\) 3968.00 0.147948
\(897\) 7488.00 0.278726
\(898\) −5520.00 −0.205128
\(899\) −4800.00 −0.178074
\(900\) 0 0
\(901\) −29808.0 −1.10216
\(902\) −29412.0 −1.08571
\(903\) 4154.00 0.153086
\(904\) 6576.00 0.241941
\(905\) 0 0
\(906\) 7208.00 0.264315
\(907\) −29324.0 −1.07353 −0.536763 0.843733i \(-0.680353\pi\)
−0.536763 + 0.843733i \(0.680353\pi\)
\(908\) −11376.0 −0.415777
\(909\) −24426.0 −0.891264
\(910\) 0 0
\(911\) 47142.0 1.71447 0.857236 0.514924i \(-0.172180\pi\)
0.857236 + 0.514924i \(0.172180\pi\)
\(912\) 608.000 0.0220755
\(913\) 684.000 0.0247942
\(914\) −8998.00 −0.325632
\(915\) 0 0
\(916\) 6980.00 0.251775
\(917\) −2883.00 −0.103822
\(918\) 13800.0 0.496152
\(919\) −39940.0 −1.43362 −0.716811 0.697267i \(-0.754399\pi\)
−0.716811 + 0.697267i \(0.754399\pi\)
\(920\) 0 0
\(921\) 2192.00 0.0784244
\(922\) −23286.0 −0.831761
\(923\) 33384.0 1.19052
\(924\) 14136.0 0.503290
\(925\) 0 0
\(926\) 3074.00 0.109091
\(927\) 27094.0 0.959961
\(928\) −4800.00 −0.169793
\(929\) −4410.00 −0.155745 −0.0778727 0.996963i \(-0.524813\pi\)
−0.0778727 + 0.996963i \(0.524813\pi\)
\(930\) 0 0
\(931\) 11742.0 0.413350
\(932\) −21132.0 −0.742706
\(933\) 3894.00 0.136639
\(934\) 15282.0 0.535377
\(935\) 0 0
\(936\) −9568.00 −0.334124
\(937\) 41671.0 1.45286 0.726431 0.687239i \(-0.241178\pi\)
0.726431 + 0.687239i \(0.241178\pi\)
\(938\) 53072.0 1.84740
\(939\) −15196.0 −0.528118
\(940\) 0 0
\(941\) 4062.00 0.140720 0.0703599 0.997522i \(-0.477585\pi\)
0.0703599 + 0.997522i \(0.477585\pi\)
\(942\) 12904.0 0.446322
\(943\) −18576.0 −0.641482
\(944\) −5280.00 −0.182044
\(945\) 0 0
\(946\) 7638.00 0.262508
\(947\) 45036.0 1.54538 0.772689 0.634785i \(-0.218911\pi\)
0.772689 + 0.634785i \(0.218911\pi\)
\(948\) −5600.00 −0.191856
\(949\) 25324.0 0.866230
\(950\) 0 0
\(951\) −16668.0 −0.568346
\(952\) −17112.0 −0.582566
\(953\) −26508.0 −0.901027 −0.450513 0.892770i \(-0.648759\pi\)
−0.450513 + 0.892770i \(0.648759\pi\)
\(954\) −19872.0 −0.674402
\(955\) 0 0
\(956\) 1860.00 0.0629254
\(957\) −17100.0 −0.577601
\(958\) −17160.0 −0.578721
\(959\) −39339.0 −1.32463
\(960\) 0 0
\(961\) −28767.0 −0.965627
\(962\) 23504.0 0.787733
\(963\) 2622.00 0.0877391
\(964\) −28312.0 −0.945921
\(965\) 0 0
\(966\) 8928.00 0.297364
\(967\) 15976.0 0.531286 0.265643 0.964071i \(-0.414416\pi\)
0.265643 + 0.964071i \(0.414416\pi\)
\(968\) 15344.0 0.509478
\(969\) −2622.00 −0.0869255
\(970\) 0 0
\(971\) −39468.0 −1.30442 −0.652208 0.758040i \(-0.726157\pi\)
−0.652208 + 0.758040i \(0.726157\pi\)
\(972\) 14168.0 0.467530
\(973\) −61225.0 −2.01725
\(974\) −24268.0 −0.798354
\(975\) 0 0
\(976\) −208.000 −0.00682164
\(977\) −21804.0 −0.713994 −0.356997 0.934106i \(-0.616199\pi\)
−0.356997 + 0.934106i \(0.616199\pi\)
\(978\) −5072.00 −0.165833
\(979\) −34200.0 −1.11648
\(980\) 0 0
\(981\) −33580.0 −1.09289
\(982\) −11016.0 −0.357978
\(983\) −11268.0 −0.365609 −0.182804 0.983149i \(-0.558517\pi\)
−0.182804 + 0.983149i \(0.558517\pi\)
\(984\) −4128.00 −0.133736
\(985\) 0 0
\(986\) 20700.0 0.668582
\(987\) −35898.0 −1.15770
\(988\) 3952.00 0.127257
\(989\) 4824.00 0.155100
\(990\) 0 0
\(991\) −778.000 −0.0249384 −0.0124692 0.999922i \(-0.503969\pi\)
−0.0124692 + 0.999922i \(0.503969\pi\)
\(992\) 1024.00 0.0327742
\(993\) −16736.0 −0.534845
\(994\) 39804.0 1.27013
\(995\) 0 0
\(996\) 96.0000 0.00305409
\(997\) −389.000 −0.0123568 −0.00617841 0.999981i \(-0.501967\pi\)
−0.00617841 + 0.999981i \(0.501967\pi\)
\(998\) −23810.0 −0.755203
\(999\) −22600.0 −0.715748
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 950.4.a.d.1.1 1
5.2 odd 4 950.4.b.d.799.2 2
5.3 odd 4 950.4.b.d.799.1 2
5.4 even 2 38.4.a.a.1.1 1
15.14 odd 2 342.4.a.d.1.1 1
20.19 odd 2 304.4.a.a.1.1 1
35.34 odd 2 1862.4.a.a.1.1 1
40.19 odd 2 1216.4.a.b.1.1 1
40.29 even 2 1216.4.a.e.1.1 1
95.94 odd 2 722.4.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.4.a.a.1.1 1 5.4 even 2
304.4.a.a.1.1 1 20.19 odd 2
342.4.a.d.1.1 1 15.14 odd 2
722.4.a.d.1.1 1 95.94 odd 2
950.4.a.d.1.1 1 1.1 even 1 trivial
950.4.b.d.799.1 2 5.3 odd 4
950.4.b.d.799.2 2 5.2 odd 4
1216.4.a.b.1.1 1 40.19 odd 2
1216.4.a.e.1.1 1 40.29 even 2
1862.4.a.a.1.1 1 35.34 odd 2