Newspace parameters
Level: | \( N \) | \(=\) | \( 950 = 2 \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 950.w (of order \(20\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.58578819202\) |
Analytic rank: | \(0\) |
Dimension: | \(400\) |
Relative dimension: | \(50\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −0.987688 | + | 0.156434i | −1.41733 | + | 2.78167i | 0.951057 | − | 0.309017i | 2.23282 | − | 0.120389i | 0.964734 | − | 2.96915i | 3.07932 | + | 3.07932i | −0.891007 | + | 0.453990i | −3.96551 | − | 5.45806i | −2.18650 | + | 0.468198i |
37.2 | −0.987688 | + | 0.156434i | −1.40212 | + | 2.75181i | 0.951057 | − | 0.309017i | −1.82971 | − | 1.28537i | 0.954377 | − | 2.93727i | −1.62377 | − | 1.62377i | −0.891007 | + | 0.453990i | −3.84317 | − | 5.28967i | 2.00826 | + | 0.983314i |
37.3 | −0.987688 | + | 0.156434i | −1.32806 | + | 2.60647i | 0.951057 | − | 0.309017i | 1.06510 | + | 1.96610i | 0.903971 | − | 2.78214i | −0.494215 | − | 0.494215i | −0.891007 | + | 0.453990i | −3.26659 | − | 4.49607i | −1.35955 | − | 1.77528i |
37.4 | −0.987688 | + | 0.156434i | −1.26480 | + | 2.48231i | 0.951057 | − | 0.309017i | −1.52838 | + | 1.63219i | 0.860911 | − | 2.64961i | −1.59067 | − | 1.59067i | −0.891007 | + | 0.453990i | −2.79880 | − | 3.85222i | 1.25423 | − | 1.85119i |
37.5 | −0.987688 | + | 0.156434i | −1.00551 | + | 1.97343i | 0.951057 | − | 0.309017i | 1.74220 | − | 1.40169i | 0.684420 | − | 2.10643i | −1.24411 | − | 1.24411i | −0.891007 | + | 0.453990i | −1.12001 | − | 1.54156i | −1.50148 | + | 1.65697i |
37.6 | −0.987688 | + | 0.156434i | −0.966228 | + | 1.89633i | 0.951057 | − | 0.309017i | −0.861084 | − | 2.06362i | 0.657681 | − | 2.02413i | 2.78834 | + | 2.78834i | −0.891007 | + | 0.453990i | −0.899114 | − | 1.23752i | 1.17330 | + | 1.90351i |
37.7 | −0.987688 | + | 0.156434i | −0.669280 | + | 1.31354i | 0.951057 | − | 0.309017i | −2.09747 | + | 0.775001i | 0.455558 | − | 1.40206i | 1.60624 | + | 1.60624i | −0.891007 | + | 0.453990i | 0.485913 | + | 0.668802i | 1.95041 | − | 1.09358i |
37.8 | −0.987688 | + | 0.156434i | −0.581458 | + | 1.14117i | 0.951057 | − | 0.309017i | 1.37992 | + | 1.75950i | 0.395780 | − | 1.21809i | 1.14962 | + | 1.14962i | −0.891007 | + | 0.453990i | 0.799169 | + | 1.09996i | −1.63817 | − | 1.52197i |
37.9 | −0.987688 | + | 0.156434i | −0.380740 | + | 0.747244i | 0.951057 | − | 0.309017i | 2.16957 | + | 0.541276i | 0.259158 | − | 0.797606i | −1.83916 | − | 1.83916i | −0.891007 | + | 0.453990i | 1.34994 | + | 1.85804i | −2.22753 | − | 0.195217i |
37.10 | −0.987688 | + | 0.156434i | −0.341841 | + | 0.670901i | 0.951057 | − | 0.309017i | 0.0404826 | − | 2.23570i | 0.232680 | − | 0.716117i | 2.21716 | + | 2.21716i | −0.891007 | + | 0.453990i | 1.43010 | + | 1.96837i | 0.309757 | + | 2.21451i |
37.11 | −0.987688 | + | 0.156434i | −0.172149 | + | 0.337861i | 0.951057 | − | 0.309017i | −1.08112 | + | 1.95734i | 0.117176 | − | 0.360631i | −2.52947 | − | 2.52947i | −0.891007 | + | 0.453990i | 1.67884 | + | 2.31073i | 0.761613 | − | 2.10237i |
37.12 | −0.987688 | + | 0.156434i | −0.140807 | + | 0.276349i | 0.951057 | − | 0.309017i | 0.842195 | + | 2.07140i | 0.0958429 | − | 0.294974i | 2.00698 | + | 2.00698i | −0.891007 | + | 0.453990i | 1.70681 | + | 2.34923i | −1.15586 | − | 1.91415i |
37.13 | −0.987688 | + | 0.156434i | −0.0204485 | + | 0.0401324i | 0.951057 | − | 0.309017i | −2.01849 | − | 0.962141i | 0.0139186 | − | 0.0428372i | −1.29403 | − | 1.29403i | −0.891007 | + | 0.453990i | 1.76216 | + | 2.42541i | 2.14415 | + | 0.634534i |
37.14 | −0.987688 | + | 0.156434i | 0.0539197 | − | 0.105823i | 0.951057 | − | 0.309017i | 0.164450 | − | 2.23001i | −0.0367014 | + | 0.112955i | −3.59050 | − | 3.59050i | −0.891007 | + | 0.453990i | 1.75506 | + | 2.41564i | 0.186426 | + | 2.22828i |
37.15 | −0.987688 | + | 0.156434i | 0.146430 | − | 0.287385i | 0.951057 | − | 0.309017i | 2.22675 | − | 0.203946i | −0.0996703 | + | 0.306754i | −0.119348 | − | 0.119348i | −0.891007 | + | 0.453990i | 1.70221 | + | 2.34289i | −2.16743 | + | 0.549775i |
37.16 | −0.987688 | + | 0.156434i | 0.299107 | − | 0.587030i | 0.951057 | − | 0.309017i | −2.03682 | − | 0.922698i | −0.203592 | + | 0.626593i | −0.375210 | − | 0.375210i | −0.891007 | + | 0.453990i | 1.50822 | + | 2.07588i | 2.15608 | + | 0.592709i |
37.17 | −0.987688 | + | 0.156434i | 0.531107 | − | 1.04236i | 0.951057 | − | 0.309017i | −1.52005 | + | 1.63996i | −0.361507 | + | 1.11261i | 3.11636 | + | 3.11636i | −0.891007 | + | 0.453990i | 0.958925 | + | 1.31985i | 1.24479 | − | 1.85755i |
37.18 | −0.987688 | + | 0.156434i | 0.672164 | − | 1.31920i | 0.951057 | − | 0.309017i | 0.922100 | − | 2.03709i | −0.457521 | + | 1.40810i | 1.03073 | + | 1.03073i | −0.891007 | + | 0.453990i | 0.474883 | + | 0.653621i | −0.592076 | + | 2.15626i |
37.19 | −0.987688 | + | 0.156434i | 0.888230 | − | 1.74325i | 0.951057 | − | 0.309017i | −1.88136 | + | 1.20850i | −0.604590 | + | 1.86074i | −1.93054 | − | 1.93054i | −0.891007 | + | 0.453990i | −0.486612 | − | 0.669764i | 1.66915 | − | 1.48793i |
37.20 | −0.987688 | + | 0.156434i | 0.966230 | − | 1.89633i | 0.951057 | − | 0.309017i | 0.684737 | + | 2.12865i | −0.657682 | + | 2.02414i | 0.498269 | + | 0.498269i | −0.891007 | + | 0.453990i | −0.899122 | − | 1.23753i | −1.00930 | − | 1.99532i |
See next 80 embeddings (of 400 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.b | odd | 2 | 1 | inner |
25.f | odd | 20 | 1 | inner |
475.v | even | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 950.2.w.a | ✓ | 400 |
19.b | odd | 2 | 1 | inner | 950.2.w.a | ✓ | 400 |
25.f | odd | 20 | 1 | inner | 950.2.w.a | ✓ | 400 |
475.v | even | 20 | 1 | inner | 950.2.w.a | ✓ | 400 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
950.2.w.a | ✓ | 400 | 1.a | even | 1 | 1 | trivial |
950.2.w.a | ✓ | 400 | 19.b | odd | 2 | 1 | inner |
950.2.w.a | ✓ | 400 | 25.f | odd | 20 | 1 | inner |
950.2.w.a | ✓ | 400 | 475.v | even | 20 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(950, [\chi])\).