Properties

Label 950.2.u.g.99.5
Level $950$
Weight $2$
Character 950.99
Analytic conductor $7.586$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 950.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.58578819202\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 190)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 99.5
Character \(\chi\) \(=\) 950.99
Dual form 950.2.u.g.499.5

$q$-expansion

\(f(q)\) \(=\) \(q+(0.342020 - 0.939693i) q^{2} +(-0.0355948 + 0.00627632i) q^{3} +(-0.766044 - 0.642788i) q^{4} +(-0.00627632 + 0.0355948i) q^{6} +(1.59124 + 0.918706i) q^{7} +(-0.866025 + 0.500000i) q^{8} +(-2.81785 + 1.02561i) q^{9} +O(q^{10})\) \(q+(0.342020 - 0.939693i) q^{2} +(-0.0355948 + 0.00627632i) q^{3} +(-0.766044 - 0.642788i) q^{4} +(-0.00627632 + 0.0355948i) q^{6} +(1.59124 + 0.918706i) q^{7} +(-0.866025 + 0.500000i) q^{8} +(-2.81785 + 1.02561i) q^{9} +(1.23288 + 2.13541i) q^{11} +(0.0313015 + 0.0180720i) q^{12} +(2.35673 + 0.415556i) q^{13} +(1.40754 - 1.18107i) q^{14} +(0.173648 + 0.984808i) q^{16} +(-2.30589 + 6.33539i) q^{17} +2.99869i q^{18} +(4.34868 + 0.298357i) q^{19} +(-0.0624061 - 0.0227140i) q^{21} +(2.42830 - 0.428174i) q^{22} +(-1.04191 + 1.24170i) q^{23} +(0.0276878 - 0.0232329i) q^{24} +(1.19655 - 2.07248i) q^{26} +(0.187768 - 0.108408i) q^{27} +(-0.628432 - 1.72660i) q^{28} +(3.10246 - 1.12920i) q^{29} +(1.75192 - 3.03441i) q^{31} +(0.984808 + 0.173648i) q^{32} +(-0.0572866 - 0.0682715i) q^{33} +(5.16466 + 4.33366i) q^{34} +(2.81785 + 1.02561i) q^{36} +6.00888i q^{37} +(1.76770 - 3.98437i) q^{38} -0.0864957 q^{39} +(-1.38582 - 7.85939i) q^{41} +(-0.0426883 + 0.0508739i) q^{42} +(3.67317 + 4.37751i) q^{43} +(0.428174 - 2.42830i) q^{44} +(0.810460 + 1.40376i) q^{46} +(4.27274 + 11.7392i) q^{47} +(-0.0123619 - 0.0339642i) q^{48} +(-1.81196 - 3.13841i) q^{49} +(0.0423149 - 0.239980i) q^{51} +(-1.53825 - 1.83321i) q^{52} +(1.23503 - 1.47185i) q^{53} +(-0.0376497 - 0.213522i) q^{54} -1.83741 q^{56} +(-0.156663 + 0.0166738i) q^{57} -3.30157i q^{58} +(-4.46726 - 1.62595i) q^{59} +(10.4674 + 8.78317i) q^{61} +(-2.25222 - 2.68410i) q^{62} +(-5.42613 - 0.956772i) q^{63} +(0.500000 - 0.866025i) q^{64} +(-0.0837473 + 0.0304815i) q^{66} +(-1.27151 - 3.49344i) q^{67} +(5.83873 - 3.37099i) q^{68} +(0.0292932 - 0.0507373i) q^{69} +(4.46844 - 3.74946i) q^{71} +(1.92752 - 2.29713i) q^{72} +(0.502654 - 0.0886314i) q^{73} +(5.64650 + 2.05516i) q^{74} +(-3.13950 - 3.02383i) q^{76} +4.53061i q^{77} +(-0.0295833 + 0.0812794i) q^{78} +(-2.10729 - 11.9511i) q^{79} +(6.88539 - 5.77753i) q^{81} +(-7.85939 - 1.38582i) q^{82} +(-5.39755 - 3.11628i) q^{83} +(0.0332056 + 0.0575138i) q^{84} +(5.36981 - 1.95445i) q^{86} +(-0.103344 + 0.0596659i) q^{87} +(-2.13541 - 1.23288i) q^{88} +(-2.95236 + 16.7437i) q^{89} +(3.36837 + 2.82640i) q^{91} +(1.59629 - 0.281470i) q^{92} +(-0.0433143 + 0.119005i) q^{93} +12.4926 q^{94} -0.0361439 q^{96} +(4.67194 - 12.8360i) q^{97} +(-3.56887 + 0.629287i) q^{98} +(-5.66417 - 4.75280i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 36q^{9} + O(q^{10}) \) \( 36q + 36q^{9} - 24q^{11} - 12q^{14} + 24q^{21} - 18q^{26} + 12q^{29} - 12q^{31} - 36q^{34} - 36q^{36} - 96q^{39} - 42q^{41} - 6q^{44} + 36q^{46} + 78q^{49} + 84q^{51} + 108q^{54} + 60q^{59} + 96q^{61} + 18q^{64} + 48q^{66} + 60q^{69} + 60q^{71} + 6q^{74} - 42q^{76} - 60q^{79} + 36q^{81} - 12q^{84} + 72q^{86} - 60q^{89} - 120q^{91} - 12q^{94} - 342q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.342020 0.939693i 0.241845 0.664463i
\(3\) −0.0355948 + 0.00627632i −0.0205507 + 0.00362364i −0.183914 0.982942i \(-0.558877\pi\)
0.163363 + 0.986566i \(0.447766\pi\)
\(4\) −0.766044 0.642788i −0.383022 0.321394i
\(5\) 0 0
\(6\) −0.00627632 + 0.0355948i −0.00256230 + 0.0145315i
\(7\) 1.59124 + 0.918706i 0.601434 + 0.347238i 0.769605 0.638520i \(-0.220453\pi\)
−0.168172 + 0.985758i \(0.553786\pi\)
\(8\) −0.866025 + 0.500000i −0.306186 + 0.176777i
\(9\) −2.81785 + 1.02561i −0.939283 + 0.341871i
\(10\) 0 0
\(11\) 1.23288 + 2.13541i 0.371727 + 0.643850i 0.989831 0.142246i \(-0.0454325\pi\)
−0.618105 + 0.786096i \(0.712099\pi\)
\(12\) 0.0313015 + 0.0180720i 0.00903598 + 0.00521692i
\(13\) 2.35673 + 0.415556i 0.653641 + 0.115254i 0.490627 0.871369i \(-0.336768\pi\)
0.163013 + 0.986624i \(0.447879\pi\)
\(14\) 1.40754 1.18107i 0.376180 0.315653i
\(15\) 0 0
\(16\) 0.173648 + 0.984808i 0.0434120 + 0.246202i
\(17\) −2.30589 + 6.33539i −0.559261 + 1.53656i 0.261451 + 0.965217i \(0.415799\pi\)
−0.820712 + 0.571341i \(0.806423\pi\)
\(18\) 2.99869i 0.706799i
\(19\) 4.34868 + 0.298357i 0.997655 + 0.0684477i
\(20\) 0 0
\(21\) −0.0624061 0.0227140i −0.0136181 0.00495660i
\(22\) 2.42830 0.428174i 0.517714 0.0912870i
\(23\) −1.04191 + 1.24170i −0.217253 + 0.258912i −0.863653 0.504087i \(-0.831829\pi\)
0.646400 + 0.762998i \(0.276274\pi\)
\(24\) 0.0276878 0.0232329i 0.00565176 0.00474239i
\(25\) 0 0
\(26\) 1.19655 2.07248i 0.234662 0.406446i
\(27\) 0.187768 0.108408i 0.0361360 0.0208632i
\(28\) −0.628432 1.72660i −0.118762 0.326297i
\(29\) 3.10246 1.12920i 0.576113 0.209688i −0.0374978 0.999297i \(-0.511939\pi\)
0.613611 + 0.789609i \(0.289716\pi\)
\(30\) 0 0
\(31\) 1.75192 3.03441i 0.314654 0.544997i −0.664710 0.747102i \(-0.731445\pi\)
0.979364 + 0.202105i \(0.0647782\pi\)
\(32\) 0.984808 + 0.173648i 0.174091 + 0.0306970i
\(33\) −0.0572866 0.0682715i −0.00997231 0.0118845i
\(34\) 5.16466 + 4.33366i 0.885732 + 0.743217i
\(35\) 0 0
\(36\) 2.81785 + 1.02561i 0.469642 + 0.170936i
\(37\) 6.00888i 0.987854i 0.869503 + 0.493927i \(0.164439\pi\)
−0.869503 + 0.493927i \(0.835561\pi\)
\(38\) 1.76770 3.98437i 0.286759 0.646351i
\(39\) −0.0864957 −0.0138504
\(40\) 0 0
\(41\) −1.38582 7.85939i −0.216429 1.22743i −0.878409 0.477909i \(-0.841395\pi\)
0.661980 0.749521i \(-0.269716\pi\)
\(42\) −0.0426883 + 0.0508739i −0.00658695 + 0.00785002i
\(43\) 3.67317 + 4.37751i 0.560153 + 0.667564i 0.969579 0.244779i \(-0.0787155\pi\)
−0.409426 + 0.912343i \(0.634271\pi\)
\(44\) 0.428174 2.42830i 0.0645497 0.366079i
\(45\) 0 0
\(46\) 0.810460 + 1.40376i 0.119496 + 0.206973i
\(47\) 4.27274 + 11.7392i 0.623243 + 1.71234i 0.698908 + 0.715212i \(0.253670\pi\)
−0.0756655 + 0.997133i \(0.524108\pi\)
\(48\) −0.0123619 0.0339642i −0.00178429 0.00490231i
\(49\) −1.81196 3.13841i −0.258851 0.448344i
\(50\) 0 0
\(51\) 0.0423149 0.239980i 0.00592527 0.0336039i
\(52\) −1.53825 1.83321i −0.213317 0.254221i
\(53\) 1.23503 1.47185i 0.169644 0.202174i −0.674524 0.738253i \(-0.735651\pi\)
0.844167 + 0.536080i \(0.180095\pi\)
\(54\) −0.0376497 0.213522i −0.00512348 0.0290567i
\(55\) 0 0
\(56\) −1.83741 −0.245534
\(57\) −0.156663 + 0.0166738i −0.0207505 + 0.00220849i
\(58\) 3.30157i 0.433518i
\(59\) −4.46726 1.62595i −0.581587 0.211681i 0.0344379 0.999407i \(-0.489036\pi\)
−0.616025 + 0.787726i \(0.711258\pi\)
\(60\) 0 0
\(61\) 10.4674 + 8.78317i 1.34021 + 1.12457i 0.981572 + 0.191093i \(0.0612033\pi\)
0.358638 + 0.933477i \(0.383241\pi\)
\(62\) −2.25222 2.68410i −0.286033 0.340881i
\(63\) −5.42613 0.956772i −0.683628 0.120542i
\(64\) 0.500000 0.866025i 0.0625000 0.108253i
\(65\) 0 0
\(66\) −0.0837473 + 0.0304815i −0.0103086 + 0.00375202i
\(67\) −1.27151 3.49344i −0.155340 0.426792i 0.837472 0.546480i \(-0.184033\pi\)
−0.992812 + 0.119688i \(0.961810\pi\)
\(68\) 5.83873 3.37099i 0.708050 0.408793i
\(69\) 0.0292932 0.0507373i 0.00352648 0.00610805i
\(70\) 0 0
\(71\) 4.46844 3.74946i 0.530306 0.444980i −0.337901 0.941182i \(-0.609717\pi\)
0.868207 + 0.496202i \(0.165272\pi\)
\(72\) 1.92752 2.29713i 0.227161 0.270720i
\(73\) 0.502654 0.0886314i 0.0588311 0.0103735i −0.144155 0.989555i \(-0.546046\pi\)
0.202986 + 0.979182i \(0.434935\pi\)
\(74\) 5.64650 + 2.05516i 0.656393 + 0.238907i
\(75\) 0 0
\(76\) −3.13950 3.02383i −0.360125 0.346857i
\(77\) 4.53061i 0.516311i
\(78\) −0.0295833 + 0.0812794i −0.00334965 + 0.00920307i
\(79\) −2.10729 11.9511i −0.237089 1.34460i −0.838169 0.545411i \(-0.816374\pi\)
0.601080 0.799189i \(-0.294737\pi\)
\(80\) 0 0
\(81\) 6.88539 5.77753i 0.765044 0.641948i
\(82\) −7.85939 1.38582i −0.867924 0.153038i
\(83\) −5.39755 3.11628i −0.592459 0.342056i 0.173610 0.984814i \(-0.444457\pi\)
−0.766069 + 0.642758i \(0.777790\pi\)
\(84\) 0.0332056 + 0.0575138i 0.00362303 + 0.00627527i
\(85\) 0 0
\(86\) 5.36981 1.95445i 0.579042 0.210754i
\(87\) −0.103344 + 0.0596659i −0.0110797 + 0.00639685i
\(88\) −2.13541 1.23288i −0.227635 0.131425i
\(89\) −2.95236 + 16.7437i −0.312949 + 1.77482i 0.270545 + 0.962707i \(0.412796\pi\)
−0.583494 + 0.812117i \(0.698315\pi\)
\(90\) 0 0
\(91\) 3.36837 + 2.82640i 0.353101 + 0.296287i
\(92\) 1.59629 0.281470i 0.166425 0.0293452i
\(93\) −0.0433143 + 0.119005i −0.00449148 + 0.0123402i
\(94\) 12.4926 1.28852
\(95\) 0 0
\(96\) −0.0361439 −0.00368892
\(97\) 4.67194 12.8360i 0.474363 1.30330i −0.439851 0.898071i \(-0.644969\pi\)
0.914214 0.405232i \(-0.132809\pi\)
\(98\) −3.56887 + 0.629287i −0.360510 + 0.0635676i
\(99\) −5.66417 4.75280i −0.569270 0.477675i
\(100\) 0 0
\(101\) −1.85079 + 10.4964i −0.184161 + 1.04443i 0.742868 + 0.669438i \(0.233465\pi\)
−0.927029 + 0.374990i \(0.877646\pi\)
\(102\) −0.211034 0.121841i −0.0208955 0.0120640i
\(103\) −8.44314 + 4.87465i −0.831927 + 0.480313i −0.854512 0.519431i \(-0.826144\pi\)
0.0225848 + 0.999745i \(0.492810\pi\)
\(104\) −2.24877 + 0.818485i −0.220510 + 0.0802591i
\(105\) 0 0
\(106\) −0.960680 1.66395i −0.0933095 0.161617i
\(107\) 11.5058 + 6.64287i 1.11231 + 0.642191i 0.939426 0.342752i \(-0.111359\pi\)
0.172881 + 0.984943i \(0.444692\pi\)
\(108\) −0.213522 0.0376497i −0.0205462 0.00362285i
\(109\) −1.10611 + 0.928135i −0.105946 + 0.0888992i −0.694222 0.719761i \(-0.744251\pi\)
0.588276 + 0.808660i \(0.299807\pi\)
\(110\) 0 0
\(111\) −0.0377137 0.213885i −0.00357963 0.0203011i
\(112\) −0.628432 + 1.72660i −0.0593812 + 0.163149i
\(113\) 0.841529i 0.0791644i −0.999216 0.0395822i \(-0.987397\pi\)
0.999216 0.0395822i \(-0.0126027\pi\)
\(114\) −0.0379136 + 0.152918i −0.00355094 + 0.0143221i
\(115\) 0 0
\(116\) −3.10246 1.12920i −0.288056 0.104844i
\(117\) −7.06713 + 1.24612i −0.653356 + 0.115204i
\(118\) −3.05578 + 3.64174i −0.281308 + 0.335250i
\(119\) −9.48960 + 7.96272i −0.869910 + 0.729941i
\(120\) 0 0
\(121\) 2.46002 4.26089i 0.223639 0.387353i
\(122\) 11.8335 6.83209i 1.07136 0.618549i
\(123\) 0.0986562 + 0.271056i 0.00889553 + 0.0244403i
\(124\) −3.29253 + 1.19838i −0.295678 + 0.107618i
\(125\) 0 0
\(126\) −2.75492 + 4.77166i −0.245427 + 0.425093i
\(127\) −12.7885 2.25496i −1.13480 0.200095i −0.425469 0.904973i \(-0.639891\pi\)
−0.709329 + 0.704878i \(0.751002\pi\)
\(128\) −0.642788 0.766044i −0.0568149 0.0677094i
\(129\) −0.158220 0.132763i −0.0139305 0.0116891i
\(130\) 0 0
\(131\) −8.39051 3.05389i −0.733082 0.266820i −0.0516131 0.998667i \(-0.516436\pi\)
−0.681469 + 0.731847i \(0.738658\pi\)
\(132\) 0.0891221i 0.00775708i
\(133\) 6.64571 + 4.46991i 0.576256 + 0.387590i
\(134\) −3.71765 −0.321156
\(135\) 0 0
\(136\) −1.17073 6.63956i −0.100390 0.569337i
\(137\) 2.86271 3.41165i 0.244578 0.291477i −0.629764 0.776786i \(-0.716849\pi\)
0.874343 + 0.485309i \(0.161293\pi\)
\(138\) −0.0376586 0.0448798i −0.00320571 0.00382042i
\(139\) 0.210369 1.19306i 0.0178433 0.101194i −0.974585 0.224016i \(-0.928083\pi\)
0.992429 + 0.122822i \(0.0391943\pi\)
\(140\) 0 0
\(141\) −0.225767 0.391039i −0.0190130 0.0329314i
\(142\) −1.99505 5.48135i −0.167421 0.459985i
\(143\) 2.01819 + 5.54492i 0.168769 + 0.463689i
\(144\) −1.49935 2.59694i −0.124946 0.216412i
\(145\) 0 0
\(146\) 0.0886314 0.502654i 0.00733519 0.0415999i
\(147\) 0.0841940 + 0.100339i 0.00694421 + 0.00827578i
\(148\) 3.86244 4.60307i 0.317490 0.378370i
\(149\) −1.61216 9.14300i −0.132073 0.749024i −0.976853 0.213910i \(-0.931380\pi\)
0.844780 0.535114i \(-0.179731\pi\)
\(150\) 0 0
\(151\) −3.34570 −0.272269 −0.136135 0.990690i \(-0.543468\pi\)
−0.136135 + 0.990690i \(0.543468\pi\)
\(152\) −3.91524 + 1.91595i −0.317568 + 0.155404i
\(153\) 20.2171i 1.63446i
\(154\) 4.25738 + 1.54956i 0.343069 + 0.124867i
\(155\) 0 0
\(156\) 0.0662595 + 0.0555984i 0.00530501 + 0.00445143i
\(157\) −4.53369 5.40304i −0.361828 0.431210i 0.554163 0.832408i \(-0.313038\pi\)
−0.915991 + 0.401198i \(0.868594\pi\)
\(158\) −11.9511 2.10729i −0.950775 0.167647i
\(159\) −0.0347227 + 0.0601415i −0.00275369 + 0.00476953i
\(160\) 0 0
\(161\) −2.79868 + 1.01864i −0.220567 + 0.0802798i
\(162\) −3.07416 8.44619i −0.241529 0.663595i
\(163\) −13.7316 + 7.92794i −1.07554 + 0.620964i −0.929690 0.368343i \(-0.879925\pi\)
−0.145851 + 0.989307i \(0.546592\pi\)
\(164\) −3.99032 + 6.91143i −0.311591 + 0.539692i
\(165\) 0 0
\(166\) −4.77442 + 4.00621i −0.370567 + 0.310942i
\(167\) −8.75846 + 10.4379i −0.677750 + 0.807711i −0.989817 0.142349i \(-0.954534\pi\)
0.312066 + 0.950060i \(0.398979\pi\)
\(168\) 0.0654023 0.0115322i 0.00504590 0.000889728i
\(169\) −6.83449 2.48755i −0.525730 0.191350i
\(170\) 0 0
\(171\) −12.5599 + 3.61934i −0.960481 + 0.276778i
\(172\) 5.71443i 0.435721i
\(173\) 4.11774 11.3134i 0.313066 0.860142i −0.678968 0.734168i \(-0.737572\pi\)
0.992034 0.125973i \(-0.0402054\pi\)
\(174\) 0.0207217 + 0.117519i 0.00157091 + 0.00890908i
\(175\) 0 0
\(176\) −1.88888 + 1.58496i −0.142380 + 0.119471i
\(177\) 0.169216 + 0.0298374i 0.0127191 + 0.00224271i
\(178\) 14.7241 + 8.50098i 1.10362 + 0.637175i
\(179\) 8.03649 + 13.9196i 0.600675 + 1.04040i 0.992719 + 0.120454i \(0.0384349\pi\)
−0.392044 + 0.919947i \(0.628232\pi\)
\(180\) 0 0
\(181\) −5.40615 + 1.96768i −0.401836 + 0.146256i −0.535029 0.844834i \(-0.679699\pi\)
0.133193 + 0.991090i \(0.457477\pi\)
\(182\) 3.80799 2.19855i 0.282267 0.162967i
\(183\) −0.427710 0.246939i −0.0316173 0.0182542i
\(184\) 0.281470 1.59629i 0.0207502 0.117680i
\(185\) 0 0
\(186\) 0.0970138 + 0.0814042i 0.00711339 + 0.00596885i
\(187\) −16.3715 + 2.88674i −1.19720 + 0.211099i
\(188\) 4.27274 11.7392i 0.311621 0.856172i
\(189\) 0.398381 0.0289779
\(190\) 0 0
\(191\) −20.5460 −1.48666 −0.743329 0.668926i \(-0.766754\pi\)
−0.743329 + 0.668926i \(0.766754\pi\)
\(192\) −0.0123619 + 0.0339642i −0.000892147 + 0.00245115i
\(193\) 12.3238 2.17302i 0.887089 0.156418i 0.288506 0.957478i \(-0.406842\pi\)
0.598583 + 0.801060i \(0.295731\pi\)
\(194\) −10.4640 8.78037i −0.751274 0.630394i
\(195\) 0 0
\(196\) −0.629287 + 3.56887i −0.0449491 + 0.254919i
\(197\) 5.21647 + 3.01173i 0.371658 + 0.214577i 0.674183 0.738565i \(-0.264496\pi\)
−0.302524 + 0.953142i \(0.597829\pi\)
\(198\) −6.40343 + 3.69702i −0.455072 + 0.262736i
\(199\) 10.5749 3.84894i 0.749633 0.272844i 0.0611814 0.998127i \(-0.480513\pi\)
0.688451 + 0.725283i \(0.258291\pi\)
\(200\) 0 0
\(201\) 0.0671851 + 0.116368i 0.00473887 + 0.00820797i
\(202\) 9.23035 + 5.32914i 0.649445 + 0.374957i
\(203\) 5.97418 + 1.05341i 0.419305 + 0.0739349i
\(204\) −0.186671 + 0.156636i −0.0130696 + 0.0109667i
\(205\) 0 0
\(206\) 1.69295 + 9.60119i 0.117953 + 0.668946i
\(207\) 1.66244 4.56751i 0.115547 0.317464i
\(208\) 2.39309i 0.165931i
\(209\) 4.72427 + 9.65403i 0.326785 + 0.667783i
\(210\) 0 0
\(211\) −13.2192 4.81141i −0.910049 0.331231i −0.155777 0.987792i \(-0.549788\pi\)
−0.754273 + 0.656561i \(0.772010\pi\)
\(212\) −1.89217 + 0.333641i −0.129955 + 0.0229145i
\(213\) −0.135520 + 0.161507i −0.00928570 + 0.0110663i
\(214\) 10.1775 8.53991i 0.695718 0.583776i
\(215\) 0 0
\(216\) −0.108408 + 0.187768i −0.00737624 + 0.0127760i
\(217\) 5.57547 3.21900i 0.378487 0.218520i
\(218\) 0.493850 + 1.35684i 0.0334477 + 0.0918969i
\(219\) −0.0173356 + 0.00630963i −0.00117143 + 0.000426366i
\(220\) 0 0
\(221\) −8.06709 + 13.9726i −0.542651 + 0.939899i
\(222\) −0.213885 0.0377137i −0.0143550 0.00253118i
\(223\) 16.2641 + 19.3828i 1.08913 + 1.29797i 0.951555 + 0.307477i \(0.0994848\pi\)
0.137570 + 0.990492i \(0.456071\pi\)
\(224\) 1.40754 + 1.18107i 0.0940451 + 0.0789132i
\(225\) 0 0
\(226\) −0.790779 0.287820i −0.0526018 0.0191455i
\(227\) 22.0111i 1.46093i −0.682951 0.730464i \(-0.739304\pi\)
0.682951 0.730464i \(-0.260696\pi\)
\(228\) 0.130728 + 0.0879281i 0.00865770 + 0.00582318i
\(229\) 5.29529 0.349923 0.174961 0.984575i \(-0.444020\pi\)
0.174961 + 0.984575i \(0.444020\pi\)
\(230\) 0 0
\(231\) −0.0284356 0.161266i −0.00187092 0.0106105i
\(232\) −2.12221 + 2.52915i −0.139330 + 0.166047i
\(233\) 13.2104 + 15.7436i 0.865445 + 1.03140i 0.999184 + 0.0403803i \(0.0128569\pi\)
−0.133740 + 0.991016i \(0.542699\pi\)
\(234\) −1.24612 + 7.06713i −0.0814617 + 0.461992i
\(235\) 0 0
\(236\) 2.37698 + 4.11705i 0.154728 + 0.267997i
\(237\) 0.150017 + 0.412170i 0.00974468 + 0.0267733i
\(238\) 4.23688 + 11.6407i 0.274636 + 0.754556i
\(239\) 0.443585 + 0.768312i 0.0286931 + 0.0496980i 0.880015 0.474945i \(-0.157532\pi\)
−0.851322 + 0.524643i \(0.824199\pi\)
\(240\) 0 0
\(241\) −0.694839 + 3.94063i −0.0447585 + 0.253838i −0.998974 0.0452809i \(-0.985582\pi\)
0.954216 + 0.299119i \(0.0966928\pi\)
\(242\) −3.16255 3.76898i −0.203296 0.242279i
\(243\) −0.626923 + 0.747138i −0.0402171 + 0.0479289i
\(244\) −2.37276 13.4566i −0.151900 0.861471i
\(245\) 0 0
\(246\) 0.288451 0.0183910
\(247\) 10.1247 + 2.51027i 0.644219 + 0.159724i
\(248\) 3.50384i 0.222494i
\(249\) 0.211684 + 0.0770466i 0.0134149 + 0.00488263i
\(250\) 0 0
\(251\) −9.70480 8.14329i −0.612561 0.514000i 0.282894 0.959151i \(-0.408706\pi\)
−0.895455 + 0.445151i \(0.853150\pi\)
\(252\) 3.54165 + 4.22078i 0.223103 + 0.265884i
\(253\) −3.93607 0.694035i −0.247459 0.0436336i
\(254\) −6.49290 + 11.2460i −0.407401 + 0.705639i
\(255\) 0 0
\(256\) −0.939693 + 0.342020i −0.0587308 + 0.0213763i
\(257\) −4.46158 12.2581i −0.278306 0.764639i −0.997555 0.0698866i \(-0.977736\pi\)
0.719249 0.694752i \(-0.244486\pi\)
\(258\) −0.178871 + 0.103271i −0.0111360 + 0.00642937i
\(259\) −5.52039 + 9.56160i −0.343021 + 0.594129i
\(260\) 0 0
\(261\) −7.58415 + 6.36386i −0.469447 + 0.393913i
\(262\) −5.73944 + 6.84000i −0.354584 + 0.422577i
\(263\) −27.8224 + 4.90583i −1.71560 + 0.302507i −0.943100 0.332508i \(-0.892105\pi\)
−0.772500 + 0.635015i \(0.780994\pi\)
\(264\) 0.0837473 + 0.0304815i 0.00515429 + 0.00187601i
\(265\) 0 0
\(266\) 6.47331 4.71612i 0.396904 0.289164i
\(267\) 0.614517i 0.0376079i
\(268\) −1.27151 + 3.49344i −0.0776698 + 0.213396i
\(269\) −5.13013 29.0944i −0.312789 1.77392i −0.584356 0.811498i \(-0.698653\pi\)
0.271566 0.962420i \(-0.412458\pi\)
\(270\) 0 0
\(271\) 20.6918 17.3624i 1.25693 1.05469i 0.260933 0.965357i \(-0.415970\pi\)
0.996001 0.0893367i \(-0.0284747\pi\)
\(272\) −6.63956 1.17073i −0.402582 0.0709861i
\(273\) −0.137636 0.0794641i −0.00833010 0.00480938i
\(274\) −2.22680 3.85692i −0.134526 0.233005i
\(275\) 0 0
\(276\) −0.0550532 + 0.0200377i −0.00331381 + 0.00120613i
\(277\) 20.9386 12.0889i 1.25808 0.726352i 0.285378 0.958415i \(-0.407881\pi\)
0.972701 + 0.232063i \(0.0745474\pi\)
\(278\) −1.04916 0.605735i −0.0629246 0.0363295i
\(279\) −1.82451 + 10.3473i −0.109231 + 0.619478i
\(280\) 0 0
\(281\) 1.83928 + 1.54334i 0.109722 + 0.0920681i 0.695998 0.718043i \(-0.254962\pi\)
−0.586276 + 0.810111i \(0.699407\pi\)
\(282\) −0.444673 + 0.0784079i −0.0264799 + 0.00466912i
\(283\) 2.78778 7.65937i 0.165716 0.455302i −0.828842 0.559483i \(-0.811000\pi\)
0.994558 + 0.104181i \(0.0332220\pi\)
\(284\) −5.83313 −0.346133
\(285\) 0 0
\(286\) 5.90078 0.348920
\(287\) 5.01528 13.7794i 0.296043 0.813371i
\(288\) −2.95314 + 0.520718i −0.174015 + 0.0306836i
\(289\) −21.7973 18.2901i −1.28219 1.07589i
\(290\) 0 0
\(291\) −0.0857335 + 0.486219i −0.00502579 + 0.0285027i
\(292\) −0.442026 0.255204i −0.0258676 0.0149347i
\(293\) 7.96532 4.59878i 0.465339 0.268664i −0.248947 0.968517i \(-0.580085\pi\)
0.714287 + 0.699853i \(0.246751\pi\)
\(294\) 0.123083 0.0447987i 0.00717837 0.00261271i
\(295\) 0 0
\(296\) −3.00444 5.20385i −0.174630 0.302467i
\(297\) 0.462991 + 0.267308i 0.0268655 + 0.0155108i
\(298\) −9.14300 1.61216i −0.529640 0.0933898i
\(299\) −2.97149 + 2.49338i −0.171846 + 0.144196i
\(300\) 0 0
\(301\) 1.82326 + 10.3402i 0.105091 + 0.596002i
\(302\) −1.14430 + 3.14393i −0.0658469 + 0.180913i
\(303\) 0.385232i 0.0221310i
\(304\) 0.461316 + 4.33442i 0.0264583 + 0.248596i
\(305\) 0 0
\(306\) −18.9979 6.91467i −1.08604 0.395285i
\(307\) −27.9165 + 4.92243i −1.59328 + 0.280938i −0.898728 0.438506i \(-0.855508\pi\)
−0.694550 + 0.719444i \(0.744397\pi\)
\(308\) 2.91222 3.47065i 0.165939 0.197758i
\(309\) 0.269937 0.226504i 0.0153562 0.0128854i
\(310\) 0 0
\(311\) −8.72043 + 15.1042i −0.494490 + 0.856482i −0.999980 0.00635057i \(-0.997979\pi\)
0.505490 + 0.862833i \(0.331312\pi\)
\(312\) 0.0749075 0.0432478i 0.00424080 0.00244843i
\(313\) 4.51409 + 12.4024i 0.255151 + 0.701022i 0.999450 + 0.0331750i \(0.0105619\pi\)
−0.744298 + 0.667847i \(0.767216\pi\)
\(314\) −6.62781 + 2.41233i −0.374029 + 0.136135i
\(315\) 0 0
\(316\) −6.06771 + 10.5096i −0.341336 + 0.591210i
\(317\) 12.0997 + 2.13351i 0.679588 + 0.119830i 0.502778 0.864415i \(-0.332311\pi\)
0.176810 + 0.984245i \(0.443422\pi\)
\(318\) 0.0446387 + 0.0531983i 0.00250321 + 0.00298321i
\(319\) 6.23627 + 5.23285i 0.349164 + 0.292983i
\(320\) 0 0
\(321\) −0.451239 0.164238i −0.0251857 0.00916685i
\(322\) 2.97829i 0.165974i
\(323\) −11.9178 + 26.8626i −0.663124 + 1.49467i
\(324\) −8.98824 −0.499347
\(325\) 0 0
\(326\) 2.75334 + 15.6150i 0.152494 + 0.864834i
\(327\) 0.0335464 0.0399791i 0.00185512 0.00221085i
\(328\) 5.12985 + 6.11352i 0.283249 + 0.337563i
\(329\) −3.98594 + 22.6054i −0.219752 + 1.24628i
\(330\) 0 0
\(331\) −0.498297 0.863076i −0.0273889 0.0474389i 0.852006 0.523532i \(-0.175386\pi\)
−0.879395 + 0.476093i \(0.842053\pi\)
\(332\) 2.13166 + 5.85669i 0.116990 + 0.321428i
\(333\) −6.16279 16.9321i −0.337719 0.927875i
\(334\) 6.81287 + 11.8002i 0.372784 + 0.645681i
\(335\) 0 0
\(336\) 0.0115322 0.0654023i 0.000629132 0.00356799i
\(337\) −5.50174 6.55672i −0.299699 0.357167i 0.595088 0.803660i \(-0.297117\pi\)
−0.894787 + 0.446493i \(0.852673\pi\)
\(338\) −4.67507 + 5.57153i −0.254290 + 0.303051i
\(339\) 0.00528171 + 0.0299541i 0.000286863 + 0.00162688i
\(340\) 0 0
\(341\) 8.63961 0.467861
\(342\) −0.894680 + 13.0403i −0.0483788 + 0.705141i
\(343\) 19.5205i 1.05401i
\(344\) −5.36981 1.95445i −0.289521 0.105377i
\(345\) 0 0
\(346\) −9.22276 7.73882i −0.495819 0.416041i
\(347\) 4.26665 + 5.08479i 0.229046 + 0.272966i 0.868311 0.496020i \(-0.165206\pi\)
−0.639265 + 0.768986i \(0.720761\pi\)
\(348\) 0.117519 + 0.0207217i 0.00629967 + 0.00111080i
\(349\) 15.5221 26.8851i 0.830881 1.43913i −0.0664599 0.997789i \(-0.521170\pi\)
0.897341 0.441339i \(-0.145496\pi\)
\(350\) 0 0
\(351\) 0.487570 0.177461i 0.0260246 0.00947216i
\(352\) 0.843338 + 2.31705i 0.0449501 + 0.123499i
\(353\) 15.3831 8.88145i 0.818761 0.472712i −0.0312277 0.999512i \(-0.509942\pi\)
0.849989 + 0.526800i \(0.176608\pi\)
\(354\) 0.0859133 0.148806i 0.00456624 0.00790896i
\(355\) 0 0
\(356\) 13.0243 10.9287i 0.690284 0.579217i
\(357\) 0.287804 0.342991i 0.0152322 0.0181530i
\(358\) 15.8288 2.79104i 0.836578 0.147511i
\(359\) −4.82640 1.75667i −0.254728 0.0927134i 0.211500 0.977378i \(-0.432165\pi\)
−0.466228 + 0.884665i \(0.654387\pi\)
\(360\) 0 0
\(361\) 18.8220 + 2.59491i 0.990630 + 0.136574i
\(362\) 5.75310i 0.302376i
\(363\) −0.0608214 + 0.167105i −0.00319229 + 0.00877076i
\(364\) −0.763547 4.33029i −0.0400207 0.226969i
\(365\) 0 0
\(366\) −0.378332 + 0.317458i −0.0197757 + 0.0165938i
\(367\) 5.65859 + 0.997763i 0.295376 + 0.0520828i 0.319372 0.947629i \(-0.396528\pi\)
−0.0239963 + 0.999712i \(0.507639\pi\)
\(368\) −1.40376 0.810460i −0.0731759 0.0422481i
\(369\) 11.9657 + 20.7253i 0.622911 + 1.07891i
\(370\) 0 0
\(371\) 3.31742 1.20744i 0.172232 0.0626873i
\(372\) 0.109676 0.0633212i 0.00568641 0.00328305i
\(373\) −32.7231 18.8927i −1.69434 0.978227i −0.950939 0.309379i \(-0.899879\pi\)
−0.743399 0.668848i \(-0.766788\pi\)
\(374\) −2.88674 + 16.3715i −0.149270 + 0.846551i
\(375\) 0 0
\(376\) −9.56992 8.03012i −0.493531 0.414122i
\(377\) 7.78093 1.37199i 0.400738 0.0706610i
\(378\) 0.136254 0.374355i 0.00700816 0.0192548i
\(379\) 32.2663 1.65741 0.828703 0.559689i \(-0.189079\pi\)
0.828703 + 0.559689i \(0.189079\pi\)
\(380\) 0 0
\(381\) 0.469358 0.0240459
\(382\) −7.02715 + 19.3069i −0.359540 + 0.987829i
\(383\) 21.4490 3.78204i 1.09599 0.193253i 0.403715 0.914885i \(-0.367719\pi\)
0.692277 + 0.721632i \(0.256608\pi\)
\(384\) 0.0276878 + 0.0232329i 0.00141294 + 0.00118560i
\(385\) 0 0
\(386\) 2.17302 12.3238i 0.110604 0.627267i
\(387\) −14.8401 8.56792i −0.754363 0.435532i
\(388\) −11.8298 + 6.82991i −0.600565 + 0.346736i
\(389\) 9.10078 3.31241i 0.461428 0.167946i −0.100837 0.994903i \(-0.532152\pi\)
0.562265 + 0.826957i \(0.309930\pi\)
\(390\) 0 0
\(391\) −5.46410 9.46411i −0.276332 0.478620i
\(392\) 3.13841 + 1.81196i 0.158514 + 0.0915178i
\(393\) 0.317826 + 0.0560412i 0.0160322 + 0.00282691i
\(394\) 4.61424 3.87181i 0.232462 0.195059i
\(395\) 0 0
\(396\) 1.28396 + 7.28171i 0.0645216 + 0.365920i
\(397\) 6.29151 17.2858i 0.315762 0.867549i −0.675703 0.737174i \(-0.736160\pi\)
0.991465 0.130375i \(-0.0416180\pi\)
\(398\) 11.2535i 0.564089i
\(399\) −0.264607 0.117395i −0.0132469 0.00587710i
\(400\) 0 0
\(401\) 34.3332 + 12.4963i 1.71452 + 0.624034i 0.997342 0.0728556i \(-0.0232112\pi\)
0.717178 + 0.696890i \(0.245433\pi\)
\(402\) 0.132329 0.0233331i 0.00659996 0.00116375i
\(403\) 5.38978 6.42329i 0.268484 0.319967i
\(404\) 8.16472 6.85102i 0.406210 0.340851i
\(405\) 0 0
\(406\) 3.03317 5.25361i 0.150534 0.260732i
\(407\) −12.8314 + 7.40822i −0.636030 + 0.367212i
\(408\) 0.0833440 + 0.228986i 0.00412614 + 0.0113365i
\(409\) 34.1168 12.4175i 1.68697 0.614005i 0.692728 0.721199i \(-0.256409\pi\)
0.994238 + 0.107194i \(0.0341866\pi\)
\(410\) 0 0
\(411\) −0.0804851 + 0.139404i −0.00397004 + 0.00687631i
\(412\) 9.60119 + 1.69295i 0.473016 + 0.0834056i
\(413\) −5.61473 6.69138i −0.276283 0.329261i
\(414\) −3.72347 3.12436i −0.182998 0.153554i
\(415\) 0 0
\(416\) 2.24877 + 0.818485i 0.110255 + 0.0401295i
\(417\) 0.0437872i 0.00214427i
\(418\) 10.6876 1.13749i 0.522749 0.0556366i
\(419\) −39.5001 −1.92970 −0.964852 0.262793i \(-0.915356\pi\)
−0.964852 + 0.262793i \(0.915356\pi\)
\(420\) 0 0
\(421\) −2.44853 13.8863i −0.119334 0.676777i −0.984513 0.175313i \(-0.943906\pi\)
0.865179 0.501464i \(-0.167205\pi\)
\(422\) −9.04248 + 10.7764i −0.440181 + 0.524588i
\(423\) −24.0799 28.6973i −1.17080 1.39531i
\(424\) −0.333641 + 1.89217i −0.0162030 + 0.0918919i
\(425\) 0 0
\(426\) 0.105416 + 0.182586i 0.00510743 + 0.00884632i
\(427\) 8.58701 + 23.5926i 0.415554 + 1.14173i
\(428\) −4.54399 12.4845i −0.219642 0.603462i
\(429\) −0.106639 0.184703i −0.00514856 0.00891757i
\(430\) 0 0
\(431\) 3.65410 20.7234i 0.176012 0.998213i −0.760958 0.648802i \(-0.775270\pi\)
0.936969 0.349411i \(-0.113618\pi\)
\(432\) 0.139367 + 0.166091i 0.00670529 + 0.00799105i
\(433\) 3.37958 4.02763i 0.162412 0.193555i −0.678701 0.734415i \(-0.737457\pi\)
0.841113 + 0.540860i \(0.181901\pi\)
\(434\) −1.11795 6.34019i −0.0536631 0.304339i
\(435\) 0 0
\(436\) 1.44392 0.0691513
\(437\) −4.90138 + 5.08887i −0.234465 + 0.243434i
\(438\) 0.0184481i 0.000881486i
\(439\) 34.2836 + 12.4782i 1.63627 + 0.595552i 0.986380 0.164480i \(-0.0525947\pi\)
0.649885 + 0.760032i \(0.274817\pi\)
\(440\) 0 0
\(441\) 8.32463 + 6.98519i 0.396411 + 0.332628i
\(442\) 10.3709 + 12.3595i 0.493291 + 0.587881i
\(443\) −9.09046 1.60289i −0.431901 0.0761558i −0.0465285 0.998917i \(-0.514816\pi\)
−0.385372 + 0.922761i \(0.625927\pi\)
\(444\) −0.108592 + 0.188087i −0.00515356 + 0.00892623i
\(445\) 0 0
\(446\) 23.7765 8.65395i 1.12585 0.409777i
\(447\) 0.114769 + 0.315325i 0.00542838 + 0.0149144i
\(448\) 1.59124 0.918706i 0.0751792 0.0434048i
\(449\) −11.4148 + 19.7711i −0.538699 + 0.933054i 0.460275 + 0.887776i \(0.347751\pi\)
−0.998974 + 0.0452780i \(0.985583\pi\)
\(450\) 0 0
\(451\) 15.0744 12.6490i 0.709828 0.595616i
\(452\) −0.540925 + 0.644649i −0.0254430 + 0.0303217i
\(453\) 0.119090 0.0209987i 0.00559532 0.000986605i
\(454\) −20.6837 7.52824i −0.970733 0.353318i
\(455\) 0 0
\(456\) 0.127337 0.0927713i 0.00596311 0.00434442i
\(457\) 7.82515i 0.366045i 0.983109 + 0.183022i \(0.0585881\pi\)
−0.983109 + 0.183022i \(0.941412\pi\)
\(458\) 1.81110 4.97594i 0.0846269 0.232511i
\(459\) 0.253834 + 1.43956i 0.0118480 + 0.0671931i
\(460\) 0 0
\(461\) −3.01184 + 2.52724i −0.140276 + 0.117705i −0.710225 0.703974i \(-0.751407\pi\)
0.569950 + 0.821679i \(0.306963\pi\)
\(462\) −0.161266 0.0284356i −0.00750278 0.00132294i
\(463\) 14.9791 + 8.64820i 0.696139 + 0.401916i 0.805908 0.592041i \(-0.201678\pi\)
−0.109769 + 0.993957i \(0.535011\pi\)
\(464\) 1.65079 + 2.85924i 0.0766358 + 0.132737i
\(465\) 0 0
\(466\) 19.3124 7.02913i 0.894628 0.325618i
\(467\) 18.2097 10.5134i 0.842644 0.486501i −0.0155178 0.999880i \(-0.504940\pi\)
0.858162 + 0.513379i \(0.171606\pi\)
\(468\) 6.21473 + 3.58807i 0.287276 + 0.165859i
\(469\) 1.18616 6.72707i 0.0547719 0.310627i
\(470\) 0 0
\(471\) 0.195287 + 0.163865i 0.00899836 + 0.00755052i
\(472\) 4.68173 0.825516i 0.215494 0.0379974i
\(473\) −4.81920 + 13.2406i −0.221587 + 0.608805i
\(474\) 0.438622 0.0201466
\(475\) 0 0
\(476\) 12.3878 0.567794
\(477\) −1.97057 + 5.41410i −0.0902263 + 0.247895i
\(478\) 0.873692 0.154055i 0.0399617 0.00704633i
\(479\) −16.1878 13.5832i −0.739640 0.620631i 0.193101 0.981179i \(-0.438145\pi\)
−0.932741 + 0.360547i \(0.882590\pi\)
\(480\) 0 0
\(481\) −2.49703 + 14.1613i −0.113855 + 0.645702i
\(482\) 3.46533 + 2.00071i 0.157841 + 0.0911298i
\(483\) 0.0932252 0.0538236i 0.00424190 0.00244906i
\(484\) −4.62333 + 1.68276i −0.210151 + 0.0764889i
\(485\) 0 0
\(486\) 0.487660 + 0.844651i 0.0221207 + 0.0383142i
\(487\) −14.8959 8.60015i −0.674998 0.389710i 0.122970 0.992410i \(-0.460758\pi\)
−0.797968 + 0.602700i \(0.794091\pi\)
\(488\) −13.4566 2.37276i −0.609152 0.107410i
\(489\) 0.439015 0.368377i 0.0198529 0.0166586i
\(490\) 0 0
\(491\) −5.75424 32.6339i −0.259685 1.47275i −0.783753 0.621072i \(-0.786697\pi\)
0.524068 0.851676i \(-0.324414\pi\)
\(492\) 0.0986562 0.271056i 0.00444776 0.0122201i
\(493\) 22.2591i 1.00250i
\(494\) 5.82173 8.65554i 0.261932 0.389431i
\(495\) 0 0
\(496\) 3.29253 + 1.19838i 0.147839 + 0.0538090i
\(497\) 10.5550 1.86114i 0.473458 0.0834834i
\(498\) 0.144800 0.172566i 0.00648865 0.00773287i
\(499\) 24.4903 20.5498i 1.09634 0.919936i 0.0991642 0.995071i \(-0.468383\pi\)
0.997173 + 0.0751346i \(0.0239386\pi\)
\(500\) 0 0
\(501\) 0.246244 0.426507i 0.0110014 0.0190549i
\(502\) −10.9714 + 6.33436i −0.489679 + 0.282716i
\(503\) 8.63311 + 23.7193i 0.384931 + 1.05759i 0.969253 + 0.246068i \(0.0791387\pi\)
−0.584321 + 0.811523i \(0.698639\pi\)
\(504\) 5.17755 1.88447i 0.230626 0.0839411i
\(505\) 0 0
\(506\) −1.99840 + 3.46132i −0.0888395 + 0.153875i
\(507\) 0.258885 + 0.0456484i 0.0114975 + 0.00202732i
\(508\) 8.34711 + 9.94770i 0.370343 + 0.441358i
\(509\) 13.0617 + 10.9600i 0.578948 + 0.485795i 0.884601 0.466348i \(-0.154430\pi\)
−0.305654 + 0.952143i \(0.598875\pi\)
\(510\) 0 0
\(511\) 0.881271 + 0.320756i 0.0389851 + 0.0141894i
\(512\) 1.00000i 0.0441942i
\(513\) 0.848888 0.415410i 0.0374793 0.0183408i
\(514\) −13.0448 −0.575381
\(515\) 0 0
\(516\) 0.0358656 + 0.203404i 0.00157890 + 0.00895437i
\(517\) −19.8003 + 23.5971i −0.870816 + 1.03780i
\(518\) 7.09688 + 8.45773i 0.311819 + 0.371612i
\(519\) −0.0755636 + 0.428542i −0.00331687 + 0.0188109i
\(520\) 0 0
\(521\) 3.40256 + 5.89342i 0.149069 + 0.258195i 0.930884 0.365316i \(-0.119039\pi\)
−0.781815 + 0.623511i \(0.785706\pi\)
\(522\) 3.38614 + 9.30333i 0.148207 + 0.407196i
\(523\) −1.78561 4.90593i −0.0780794 0.214521i 0.894511 0.447045i \(-0.147524\pi\)
−0.972591 + 0.232524i \(0.925302\pi\)
\(524\) 4.46449 + 7.73273i 0.195032 + 0.337806i
\(525\) 0 0
\(526\) −4.90583 + 27.8224i −0.213904 + 1.21311i
\(527\) 15.1845 + 18.0961i 0.661445 + 0.788280i
\(528\) 0.0572866 0.0682715i 0.00249308 0.00297113i
\(529\) 3.53767 + 20.0631i 0.153812 + 0.872309i
\(530\) 0 0
\(531\) 14.2557 0.618643
\(532\) −2.21770 7.69593i −0.0961496 0.333661i
\(533\) 19.0984i 0.827243i
\(534\) −0.577457 0.210177i −0.0249890 0.00909526i
\(535\) 0 0
\(536\) 2.84788 + 2.38966i 0.123010 + 0.103217i
\(537\) −0.373421 0.445026i −0.0161143 0.0192043i
\(538\) −29.0944 5.13013i −1.25435 0.221176i
\(539\) 4.46785 7.73855i 0.192444 0.333323i
\(540\) 0 0
\(541\) 24.5890 8.94968i 1.05717 0.384777i 0.245803 0.969320i \(-0.420948\pi\)
0.811363 + 0.584543i \(0.198726\pi\)
\(542\) −9.23836 25.3822i −0.396822 1.09026i
\(543\) 0.180081 0.103970i 0.00772802 0.00446177i
\(544\) −3.37099 + 5.83873i −0.144530 + 0.250333i
\(545\) 0 0
\(546\) −0.121746 + 0.102157i −0.00521025 + 0.00437192i
\(547\) 22.8424 27.2225i 0.976671 1.16395i −0.00978982 0.999952i \(-0.503116\pi\)
0.986461 0.163999i \(-0.0524393\pi\)
\(548\) −4.38593 + 0.773358i −0.187358 + 0.0330362i
\(549\) −38.5036 14.0142i −1.64330 0.598111i
\(550\) 0 0
\(551\) 13.8285 3.98490i 0.589114 0.169763i
\(552\) 0.0585864i 0.00249360i
\(553\) 7.62628 20.9530i 0.324303 0.891014i
\(554\) −4.19844 23.8105i −0.178374 1.01161i
\(555\) 0 0
\(556\) −0.928039 + 0.778717i −0.0393576 + 0.0330250i
\(557\) −30.2250 5.32949i −1.28068 0.225818i −0.508409 0.861116i \(-0.669766\pi\)
−0.772267 + 0.635298i \(0.780877\pi\)
\(558\) 9.09928 + 5.25347i 0.385203 + 0.222397i
\(559\) 6.83758 + 11.8430i 0.289199 + 0.500907i
\(560\) 0 0
\(561\) 0.564623 0.205506i 0.0238384 0.00867647i
\(562\) 2.07934 1.20051i 0.0877116 0.0506403i
\(563\) −27.0238 15.6022i −1.13892 0.657553i −0.192754 0.981247i \(-0.561742\pi\)
−0.946162 + 0.323694i \(0.895075\pi\)
\(564\) −0.0784079 + 0.444673i −0.00330157 + 0.0187241i
\(565\) 0 0
\(566\) −6.24398 5.23932i −0.262454 0.220225i
\(567\) 16.2642 2.86782i 0.683032 0.120437i
\(568\) −1.99505 + 5.48135i −0.0837104 + 0.229992i
\(569\) 20.6053 0.863820 0.431910 0.901917i \(-0.357840\pi\)
0.431910 + 0.901917i \(0.357840\pi\)
\(570\) 0 0
\(571\) 4.38785 0.183626 0.0918129 0.995776i \(-0.470734\pi\)
0.0918129 + 0.995776i \(0.470734\pi\)
\(572\) 2.01819 5.54492i 0.0843846 0.231845i
\(573\) 0.731332 0.128953i 0.0305518 0.00538711i
\(574\) −11.2330 9.42565i −0.468858 0.393419i
\(575\) 0 0
\(576\) −0.520718 + 2.95314i −0.0216966 + 0.123047i
\(577\) 25.8786 + 14.9410i 1.07734 + 0.622004i 0.930178 0.367109i \(-0.119652\pi\)
0.147164 + 0.989112i \(0.452986\pi\)
\(578\) −24.6422 + 14.2272i −1.02498 + 0.591772i
\(579\) −0.425026 + 0.154697i −0.0176635 + 0.00642898i
\(580\) 0 0
\(581\) −5.72589 9.91753i −0.237550 0.411448i
\(582\) 0.427574 + 0.246860i 0.0177235 + 0.0102327i
\(583\) 4.66563 + 0.822676i 0.193231 + 0.0340718i
\(584\) −0.390995 + 0.328084i −0.0161795 + 0.0135762i
\(585\) 0 0
\(586\) −1.59714 9.05783i −0.0659773 0.374176i
\(587\) −13.4687 + 37.0049i −0.555912 + 1.52736i 0.269601 + 0.962972i \(0.413108\pi\)
−0.825513 + 0.564383i \(0.809114\pi\)
\(588\) 0.130983i 0.00540163i
\(589\) 8.52387 12.6730i 0.351220 0.522181i
\(590\) 0 0
\(591\) −0.204582 0.0744617i −0.00841538 0.00306295i
\(592\) −5.91759 + 1.04343i −0.243212 + 0.0428848i
\(593\) 25.7834 30.7274i 1.05880 1.26182i 0.0949157 0.995485i \(-0.469742\pi\)
0.963880 0.266338i \(-0.0858137\pi\)
\(594\) 0.409540 0.343645i 0.0168036 0.0140999i
\(595\) 0 0
\(596\) −4.64202 + 8.04022i −0.190145 + 0.329340i
\(597\) −0.352253 + 0.203373i −0.0144168 + 0.00832352i
\(598\) 1.32670 + 3.64507i 0.0542527 + 0.149058i
\(599\) 29.5623 10.7598i 1.20788 0.439634i 0.341915 0.939731i \(-0.388924\pi\)
0.865970 + 0.500097i \(0.166702\pi\)
\(600\) 0 0
\(601\) 17.2445 29.8683i 0.703418 1.21836i −0.263842 0.964566i \(-0.584990\pi\)
0.967260 0.253789i \(-0.0816769\pi\)
\(602\) 10.3402 + 1.82326i 0.421437 + 0.0743107i
\(603\) 7.16585 + 8.53992i 0.291816 + 0.347773i
\(604\) 2.56296 + 2.15058i 0.104285 + 0.0875057i
\(605\) 0 0
\(606\) −0.362000 0.131757i −0.0147052 0.00535227i
\(607\) 12.9979i 0.527568i −0.964582 0.263784i \(-0.915029\pi\)
0.964582 0.263784i \(-0.0849706\pi\)
\(608\) 4.23080 + 1.04896i 0.171582 + 0.0425411i
\(609\) −0.219261 −0.00888492
\(610\) 0 0
\(611\) 5.19139 + 29.4418i 0.210021 + 1.19109i
\(612\) −12.9953 + 15.4872i −0.525305 + 0.626034i
\(613\) 5.59985 + 6.67364i 0.226176 + 0.269546i 0.867184 0.497989i \(-0.165928\pi\)
−0.641008 + 0.767534i \(0.721483\pi\)
\(614\) −4.92243 + 27.9165i −0.198653 + 1.12662i
\(615\) 0 0
\(616\) −2.26530 3.92362i −0.0912717 0.158087i
\(617\) −8.33044 22.8877i −0.335371 0.921424i −0.986689 0.162619i \(-0.948006\pi\)
0.651318 0.758805i \(-0.274216\pi\)
\(618\) −0.120520 0.331127i −0.00484804 0.0133199i
\(619\) 0.822483 + 1.42458i 0.0330584 + 0.0572588i 0.882081 0.471097i \(-0.156142\pi\)
−0.849023 + 0.528356i \(0.822809\pi\)
\(620\) 0 0
\(621\) −0.0610272 + 0.346102i −0.00244894 + 0.0138886i
\(622\) 11.2108 + 13.3605i 0.449511 + 0.535706i
\(623\) −20.0804 + 23.9309i −0.804505 + 0.958772i
\(624\) −0.0150198 0.0851816i −0.000601274 0.00340999i
\(625\) 0 0
\(626\) 13.1983 0.527510
\(627\) −0.228751 0.313982i −0.00913545 0.0125392i
\(628\) 7.05317i 0.281452i
\(629\) −38.0686 13.8558i −1.51790 0.552469i
\(630\) 0 0
\(631\) −33.3220 27.9605i −1.32653 1.11309i −0.984876 0.173261i \(-0.944570\pi\)
−0.341651 0.939827i \(-0.610986\pi\)
\(632\) 7.80050 + 9.29628i 0.310287 + 0.369786i
\(633\) 0.500734 + 0.0882929i 0.0199024 + 0.00350933i
\(634\) 6.14319 10.6403i 0.243977 0.422581i
\(635\) 0 0
\(636\) 0.0652574 0.0237517i 0.00258762 0.000941818i
\(637\) −2.96613 8.14936i −0.117522 0.322890i
\(638\) 7.05020 4.07043i 0.279120 0.161150i
\(639\) −8.74589 + 15.1483i −0.345982 + 0.599258i
\(640\) 0 0
\(641\) −28.2069 + 23.6684i −1.11411 + 0.934846i −0.998292 0.0584253i \(-0.981392\pi\)
−0.115814 + 0.993271i \(0.536948\pi\)
\(642\) −0.308666 + 0.367854i −0.0121821 + 0.0145180i
\(643\) 14.5118 2.55882i 0.572288 0.100910i 0.119988 0.992775i \(-0.461715\pi\)
0.452301 + 0.891866i \(0.350603\pi\)
\(644\) 2.79868 + 1.01864i 0.110284 + 0.0401399i
\(645\) 0 0
\(646\) 21.1664 + 20.3866i 0.832783 + 0.802100i
\(647\) 6.04813i 0.237776i 0.992908 + 0.118888i \(0.0379330\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(648\) −3.07416 + 8.44619i −0.120764 + 0.331798i
\(649\) −2.03552 11.5440i −0.0799012 0.453142i
\(650\) 0 0
\(651\) −0.178254 + 0.149573i −0.00698633 + 0.00586223i
\(652\) 15.6150 + 2.75334i 0.611530 + 0.107829i
\(653\) 2.50167 + 1.44434i 0.0978978 + 0.0565213i 0.548150 0.836380i \(-0.315332\pi\)
−0.450252 + 0.892902i \(0.648666\pi\)
\(654\) −0.0260945 0.0451970i −0.00102037 0.00176734i
\(655\) 0 0
\(656\) 7.49934 2.72954i 0.292800 0.106571i
\(657\) −1.32550 + 0.765278i −0.0517127 + 0.0298563i
\(658\) 19.8789 + 11.4771i 0.774958 + 0.447422i
\(659\) −2.83413 + 16.0731i −0.110402 + 0.626120i 0.878523 + 0.477701i \(0.158530\pi\)
−0.988925 + 0.148419i \(0.952581\pi\)
\(660\) 0 0
\(661\) 21.8640 + 18.3461i 0.850410 + 0.713579i 0.959880 0.280411i \(-0.0904708\pi\)
−0.109470 + 0.993990i \(0.534915\pi\)
\(662\) −0.981453 + 0.173057i −0.0381453 + 0.00672604i
\(663\) 0.199450 0.547984i 0.00774599 0.0212819i
\(664\) 6.23256 0.241870
\(665\) 0 0
\(666\) −18.0188 −0.698214
\(667\) −1.83035 + 5.02884i −0.0708714 + 0.194718i
\(668\) 13.4187 2.36609i 0.519187 0.0915466i
\(669\) −0.700571 0.587849i −0.0270856 0.0227275i
\(670\) 0 0
\(671\) −5.85065 + 33.1807i −0.225862 + 1.28093i
\(672\) −0.0575138 0.0332056i −0.00221864 0.00128093i
\(673\) 5.39921 3.11723i 0.208124 0.120161i −0.392315 0.919831i \(-0.628326\pi\)
0.600439 + 0.799670i \(0.294992\pi\)
\(674\) −8.04300 + 2.92741i −0.309805 + 0.112760i
\(675\) 0 0
\(676\) 3.63656 + 6.29870i 0.139868 + 0.242258i
\(677\) −12.6570 7.30750i −0.486446 0.280850i 0.236653 0.971594i \(-0.423950\pi\)
−0.723099 + 0.690744i \(0.757283\pi\)
\(678\) 0.0299541 + 0.00528171i 0.00115038 + 0.000202843i
\(679\) 19.2267 16.1331i 0.737854 0.619133i
\(680\) 0 0
\(681\) 0.138149 + 0.783481i 0.00529388 + 0.0300231i
\(682\) 2.95492 8.11858i 0.113150 0.310877i
\(683\) 47.0671i 1.80097i 0.434885 + 0.900486i \(0.356789\pi\)
−0.434885 + 0.900486i \(0.643211\pi\)
\(684\) 11.9479 + 5.30079i 0.456840 + 0.202681i
\(685\) 0 0
\(686\) −18.3433 6.67641i −0.700350 0.254906i
\(687\) −0.188485 + 0.0332350i −0.00719114 + 0.00126799i
\(688\) −3.67317 + 4.37751i −0.140038 + 0.166891i
\(689\) 3.52226 2.95553i 0.134188 0.112597i
\(690\) 0 0
\(691\) 13.6742 23.6844i 0.520191 0.900997i −0.479534 0.877523i \(-0.659194\pi\)
0.999724 0.0234732i \(-0.00747242\pi\)
\(692\) −10.4265 + 6.01973i −0.396355 + 0.228836i
\(693\) −4.64665 12.7666i −0.176512 0.484962i
\(694\) 6.23742 2.27024i 0.236769 0.0861770i
\(695\) 0 0
\(696\) 0.0596659 0.103344i 0.00226163 0.00391726i
\(697\) 52.9879 + 9.34319i 2.00706 + 0.353899i
\(698\) −19.9549 23.7813i −0.755303 0.900135i
\(699\) −0.569035 0.477477i −0.0215229 0.0180598i
\(700\) 0 0
\(701\) −18.6359 6.78290i −0.703867 0.256187i −0.0348060 0.999394i \(-0.511081\pi\)
−0.669061 + 0.743207i \(0.733304\pi\)
\(702\) 0.518861i 0.0195831i
\(703\) −1.79279 + 26.1307i −0.0676164 + 0.985538i
\(704\) 2.46576 0.0929317
\(705\) 0 0
\(706\) −3.08450 17.4931i −0.116087 0.658360i
\(707\) −12.5881 + 15.0020i −0.473425 + 0.564206i
\(708\) −0.110448 0.131627i −0.00415089 0.00494684i
\(709\) −5.68008 + 32.2133i −0.213320 + 1.20980i 0.670479 + 0.741929i \(0.266089\pi\)
−0.883799 + 0.467868i \(0.845022\pi\)
\(710\) 0 0
\(711\) 18.1952 + 31.5150i 0.682374 + 1.18191i
\(712\) −5.81501 15.9766i −0.217927 0.598749i
\(713\) 1.94248 + 5.33693i 0.0727466 + 0.199870i
\(714\) −0.223872 0.387757i −0.00837819 0.0145114i
\(715\) 0 0
\(716\) 2.79104 15.8288i 0.104306 0.591550i
\(717\) −0.0206115 0.0245638i −0.000769750 0.000917353i
\(718\) −3.30146 + 3.93452i −0.123209 + 0.146835i
\(719\) 0.563968 + 3.19842i 0.0210325 + 0.119281i 0.993516 0.113689i \(-0.0362667\pi\)
−0.972484 + 0.232970i \(0.925156\pi\)
\(720\) 0 0
\(721\) −17.9135 −0.667132
\(722\) 8.87591 16.7994i 0.330327 0.625207i
\(723\) 0.144627i 0.00537873i
\(724\) 5.40615 + 1.96768i 0.200918 + 0.0731282i
\(725\) 0 0
\(726\) 0.136226 + 0.114307i 0.00505580 + 0.00424232i
\(727\) −12.4762 14.8686i −0.462718 0.551446i 0.483344 0.875430i \(-0.339422\pi\)
−0.946062 + 0.323984i \(0.894977\pi\)
\(728\) −4.33029 0.763547i −0.160491 0.0282989i
\(729\) −13.4647 + 23.3216i −0.498694 + 0.863764i
\(730\) 0 0
\(731\) −36.2032 + 13.1769i −1.33902 + 0.487364i
\(732\) 0.168916 + 0.464093i 0.00624331 + 0.0171534i
\(733\) 10.4575 6.03763i 0.386256 0.223005i −0.294281 0.955719i \(-0.595080\pi\)
0.680537 + 0.732714i \(0.261747\pi\)
\(734\) 2.87294 4.97608i 0.106042 0.183671i
\(735\) 0 0
\(736\) −1.24170 + 1.04191i −0.0457695 + 0.0384052i
\(737\) 5.89231 7.02218i 0.217046 0.258665i
\(738\) 23.5679 4.15566i 0.867547 0.152972i
\(739\) 2.86243 + 1.04184i 0.105296 + 0.0383246i 0.394131 0.919054i \(-0.371046\pi\)
−0.288835 + 0.957379i \(0.593268\pi\)
\(740\) 0 0
\(741\) −0.376142 0.0258066i −0.0138179 0.000948028i
\(742\) 3.53033i 0.129602i
\(743\) 13.5975 37.3589i 0.498845 1.37057i −0.393547 0.919305i \(-0.628752\pi\)
0.892392 0.451261i \(-0.149026\pi\)
\(744\) −0.0219912 0.124718i −0.000806238 0.00457240i
\(745\) 0 0
\(746\) −28.9453 + 24.2880i −1.05976 + 0.889246i
\(747\) 18.4056 + 3.24540i 0.673426 + 0.118743i
\(748\) 14.3969 + 8.31204i 0.526402 + 0.303918i
\(749\) 12.2057 + 21.1409i 0.445986 + 0.772471i
\(750\) 0 0
\(751\) −33.6285 + 12.2398i −1.22712 + 0.446636i −0.872611 0.488416i \(-0.837575\pi\)
−0.354511 + 0.935052i \(0.615353\pi\)
\(752\) −10.8189 + 6.24632i −0.394526 + 0.227780i
\(753\) 0.396550 + 0.228948i 0.0144511 + 0.00834334i
\(754\) 1.37199 7.78093i 0.0499648 0.283365i
\(755\) 0 0
\(756\) −0.305177 0.256074i −0.0110992 0.00931333i
\(757\) −49.1480 + 8.66613i −1.78632 + 0.314976i −0.966310 0.257380i \(-0.917141\pi\)
−0.820006 + 0.572355i \(0.806030\pi\)
\(758\) 11.0357 30.3204i 0.400835 1.10128i
\(759\) 0.144460 0.00524355
\(760\) 0 0
\(761\) −36.2563 −1.31429 −0.657145 0.753764i \(-0.728236\pi\)
−0.657145 + 0.753764i \(0.728236\pi\)
\(762\) 0.160530 0.441052i 0.00581538 0.0159776i
\(763\) −2.61277 + 0.460702i −0.0945886 + 0.0166785i
\(764\) 15.7392 + 13.2067i 0.569423 + 0.477803i
\(765\) 0 0
\(766\) 3.78204 21.4490i 0.136651 0.774984i
\(767\) −9.85247 5.68833i −0.355752 0.205394i
\(768\) 0.0313015 0.0180720i 0.00112950 0.000652116i
\(769\) −5.18278 + 1.88638i −0.186896 + 0.0680246i −0.433773 0.901022i \(-0.642818\pi\)
0.246877 + 0.969047i \(0.420596\pi\)
\(770\) 0 0
\(771\) 0.235745 + 0.408322i 0.00849014 + 0.0147054i
\(772\) −10.8374 6.25697i −0.390046 0.225193i
\(773\) −37.8158 6.66795i −1.36014 0.239830i −0.554475 0.832200i \(-0.687081\pi\)
−0.805666 + 0.592371i \(0.798192\pi\)
\(774\) −13.1268 + 11.0147i −0.471833 + 0.395915i
\(775\) 0 0
\(776\) 2.37200 + 13.4523i 0.0851500 + 0.482910i
\(777\) 0.136486 0.374991i 0.00489639 0.0134527i
\(778\) 9.68485i 0.347219i
\(779\) −3.68159 34.5914i −0.131907 1.23937i
\(780\) 0 0
\(781\) 13.5157 + 4.91930i 0.483629 + 0.176026i
\(782\) −10.7622 + 1.89766i −0.384855 +