Properties

Label 950.2.u.g.499.2
Level $950$
Weight $2$
Character 950.499
Analytic conductor $7.586$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 950.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.58578819202\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 190)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 499.2
Character \(\chi\) \(=\) 950.499
Dual form 950.2.u.g.99.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.342020 - 0.939693i) q^{2} +(0.0355948 + 0.00627632i) q^{3} +(-0.766044 + 0.642788i) q^{4} +(-0.00627632 - 0.0355948i) q^{6} +(-1.59124 + 0.918706i) q^{7} +(0.866025 + 0.500000i) q^{8} +(-2.81785 - 1.02561i) q^{9} +O(q^{10})\) \(q+(-0.342020 - 0.939693i) q^{2} +(0.0355948 + 0.00627632i) q^{3} +(-0.766044 + 0.642788i) q^{4} +(-0.00627632 - 0.0355948i) q^{6} +(-1.59124 + 0.918706i) q^{7} +(0.866025 + 0.500000i) q^{8} +(-2.81785 - 1.02561i) q^{9} +(1.23288 - 2.13541i) q^{11} +(-0.0313015 + 0.0180720i) q^{12} +(-2.35673 + 0.415556i) q^{13} +(1.40754 + 1.18107i) q^{14} +(0.173648 - 0.984808i) q^{16} +(2.30589 + 6.33539i) q^{17} +2.99869i q^{18} +(4.34868 - 0.298357i) q^{19} +(-0.0624061 + 0.0227140i) q^{21} +(-2.42830 - 0.428174i) q^{22} +(1.04191 + 1.24170i) q^{23} +(0.0276878 + 0.0232329i) q^{24} +(1.19655 + 2.07248i) q^{26} +(-0.187768 - 0.108408i) q^{27} +(0.628432 - 1.72660i) q^{28} +(3.10246 + 1.12920i) q^{29} +(1.75192 + 3.03441i) q^{31} +(-0.984808 + 0.173648i) q^{32} +(0.0572866 - 0.0682715i) q^{33} +(5.16466 - 4.33366i) q^{34} +(2.81785 - 1.02561i) q^{36} +6.00888i q^{37} +(-1.76770 - 3.98437i) q^{38} -0.0864957 q^{39} +(-1.38582 + 7.85939i) q^{41} +(0.0426883 + 0.0508739i) q^{42} +(-3.67317 + 4.37751i) q^{43} +(0.428174 + 2.42830i) q^{44} +(0.810460 - 1.40376i) q^{46} +(-4.27274 + 11.7392i) q^{47} +(0.0123619 - 0.0339642i) q^{48} +(-1.81196 + 3.13841i) q^{49} +(0.0423149 + 0.239980i) q^{51} +(1.53825 - 1.83321i) q^{52} +(-1.23503 - 1.47185i) q^{53} +(-0.0376497 + 0.213522i) q^{54} -1.83741 q^{56} +(0.156663 + 0.0166738i) q^{57} -3.30157i q^{58} +(-4.46726 + 1.62595i) q^{59} +(10.4674 - 8.78317i) q^{61} +(2.25222 - 2.68410i) q^{62} +(5.42613 - 0.956772i) q^{63} +(0.500000 + 0.866025i) q^{64} +(-0.0837473 - 0.0304815i) q^{66} +(1.27151 - 3.49344i) q^{67} +(-5.83873 - 3.37099i) q^{68} +(0.0292932 + 0.0507373i) q^{69} +(4.46844 + 3.74946i) q^{71} +(-1.92752 - 2.29713i) q^{72} +(-0.502654 - 0.0886314i) q^{73} +(5.64650 - 2.05516i) q^{74} +(-3.13950 + 3.02383i) q^{76} +4.53061i q^{77} +(0.0295833 + 0.0812794i) q^{78} +(-2.10729 + 11.9511i) q^{79} +(6.88539 + 5.77753i) q^{81} +(7.85939 - 1.38582i) q^{82} +(5.39755 - 3.11628i) q^{83} +(0.0332056 - 0.0575138i) q^{84} +(5.36981 + 1.95445i) q^{86} +(0.103344 + 0.0596659i) q^{87} +(2.13541 - 1.23288i) q^{88} +(-2.95236 - 16.7437i) q^{89} +(3.36837 - 2.82640i) q^{91} +(-1.59629 - 0.281470i) q^{92} +(0.0433143 + 0.119005i) q^{93} +12.4926 q^{94} -0.0361439 q^{96} +(-4.67194 - 12.8360i) q^{97} +(3.56887 + 0.629287i) q^{98} +(-5.66417 + 4.75280i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 36q^{9} + O(q^{10}) \) \( 36q + 36q^{9} - 24q^{11} - 12q^{14} + 24q^{21} - 18q^{26} + 12q^{29} - 12q^{31} - 36q^{34} - 36q^{36} - 96q^{39} - 42q^{41} - 6q^{44} + 36q^{46} + 78q^{49} + 84q^{51} + 108q^{54} + 60q^{59} + 96q^{61} + 18q^{64} + 48q^{66} + 60q^{69} + 60q^{71} + 6q^{74} - 42q^{76} - 60q^{79} + 36q^{81} - 12q^{84} + 72q^{86} - 60q^{89} - 120q^{91} - 12q^{94} - 342q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.342020 0.939693i −0.241845 0.664463i
\(3\) 0.0355948 + 0.00627632i 0.0205507 + 0.00362364i 0.183914 0.982942i \(-0.441123\pi\)
−0.163363 + 0.986566i \(0.552234\pi\)
\(4\) −0.766044 + 0.642788i −0.383022 + 0.321394i
\(5\) 0 0
\(6\) −0.00627632 0.0355948i −0.00256230 0.0145315i
\(7\) −1.59124 + 0.918706i −0.601434 + 0.347238i −0.769605 0.638520i \(-0.779547\pi\)
0.168172 + 0.985758i \(0.446214\pi\)
\(8\) 0.866025 + 0.500000i 0.306186 + 0.176777i
\(9\) −2.81785 1.02561i −0.939283 0.341871i
\(10\) 0 0
\(11\) 1.23288 2.13541i 0.371727 0.643850i −0.618105 0.786096i \(-0.712099\pi\)
0.989831 + 0.142246i \(0.0454325\pi\)
\(12\) −0.0313015 + 0.0180720i −0.00903598 + 0.00521692i
\(13\) −2.35673 + 0.415556i −0.653641 + 0.115254i −0.490627 0.871369i \(-0.663232\pi\)
−0.163013 + 0.986624i \(0.552121\pi\)
\(14\) 1.40754 + 1.18107i 0.376180 + 0.315653i
\(15\) 0 0
\(16\) 0.173648 0.984808i 0.0434120 0.246202i
\(17\) 2.30589 + 6.33539i 0.559261 + 1.53656i 0.820712 + 0.571341i \(0.193577\pi\)
−0.261451 + 0.965217i \(0.584201\pi\)
\(18\) 2.99869i 0.706799i
\(19\) 4.34868 0.298357i 0.997655 0.0684477i
\(20\) 0 0
\(21\) −0.0624061 + 0.0227140i −0.0136181 + 0.00495660i
\(22\) −2.42830 0.428174i −0.517714 0.0912870i
\(23\) 1.04191 + 1.24170i 0.217253 + 0.258912i 0.863653 0.504087i \(-0.168171\pi\)
−0.646400 + 0.762998i \(0.723726\pi\)
\(24\) 0.0276878 + 0.0232329i 0.00565176 + 0.00474239i
\(25\) 0 0
\(26\) 1.19655 + 2.07248i 0.234662 + 0.406446i
\(27\) −0.187768 0.108408i −0.0361360 0.0208632i
\(28\) 0.628432 1.72660i 0.118762 0.326297i
\(29\) 3.10246 + 1.12920i 0.576113 + 0.209688i 0.613611 0.789609i \(-0.289716\pi\)
−0.0374978 + 0.999297i \(0.511939\pi\)
\(30\) 0 0
\(31\) 1.75192 + 3.03441i 0.314654 + 0.544997i 0.979364 0.202105i \(-0.0647782\pi\)
−0.664710 + 0.747102i \(0.731445\pi\)
\(32\) −0.984808 + 0.173648i −0.174091 + 0.0306970i
\(33\) 0.0572866 0.0682715i 0.00997231 0.0118845i
\(34\) 5.16466 4.33366i 0.885732 0.743217i
\(35\) 0 0
\(36\) 2.81785 1.02561i 0.469642 0.170936i
\(37\) 6.00888i 0.987854i 0.869503 + 0.493927i \(0.164439\pi\)
−0.869503 + 0.493927i \(0.835561\pi\)
\(38\) −1.76770 3.98437i −0.286759 0.646351i
\(39\) −0.0864957 −0.0138504
\(40\) 0 0
\(41\) −1.38582 + 7.85939i −0.216429 + 1.22743i 0.661980 + 0.749521i \(0.269716\pi\)
−0.878409 + 0.477909i \(0.841395\pi\)
\(42\) 0.0426883 + 0.0508739i 0.00658695 + 0.00785002i
\(43\) −3.67317 + 4.37751i −0.560153 + 0.667564i −0.969579 0.244779i \(-0.921285\pi\)
0.409426 + 0.912343i \(0.365729\pi\)
\(44\) 0.428174 + 2.42830i 0.0645497 + 0.366079i
\(45\) 0 0
\(46\) 0.810460 1.40376i 0.119496 0.206973i
\(47\) −4.27274 + 11.7392i −0.623243 + 1.71234i 0.0756655 + 0.997133i \(0.475892\pi\)
−0.698908 + 0.715212i \(0.746330\pi\)
\(48\) 0.0123619 0.0339642i 0.00178429 0.00490231i
\(49\) −1.81196 + 3.13841i −0.258851 + 0.448344i
\(50\) 0 0
\(51\) 0.0423149 + 0.239980i 0.00592527 + 0.0336039i
\(52\) 1.53825 1.83321i 0.213317 0.254221i
\(53\) −1.23503 1.47185i −0.169644 0.202174i 0.674524 0.738253i \(-0.264349\pi\)
−0.844167 + 0.536080i \(0.819905\pi\)
\(54\) −0.0376497 + 0.213522i −0.00512348 + 0.0290567i
\(55\) 0 0
\(56\) −1.83741 −0.245534
\(57\) 0.156663 + 0.0166738i 0.0207505 + 0.00220849i
\(58\) 3.30157i 0.433518i
\(59\) −4.46726 + 1.62595i −0.581587 + 0.211681i −0.616025 0.787726i \(-0.711258\pi\)
0.0344379 + 0.999407i \(0.489036\pi\)
\(60\) 0 0
\(61\) 10.4674 8.78317i 1.34021 1.12457i 0.358638 0.933477i \(-0.383241\pi\)
0.981572 0.191093i \(-0.0612033\pi\)
\(62\) 2.25222 2.68410i 0.286033 0.340881i
\(63\) 5.42613 0.956772i 0.683628 0.120542i
\(64\) 0.500000 + 0.866025i 0.0625000 + 0.108253i
\(65\) 0 0
\(66\) −0.0837473 0.0304815i −0.0103086 0.00375202i
\(67\) 1.27151 3.49344i 0.155340 0.426792i −0.837472 0.546480i \(-0.815967\pi\)
0.992812 + 0.119688i \(0.0381895\pi\)
\(68\) −5.83873 3.37099i −0.708050 0.408793i
\(69\) 0.0292932 + 0.0507373i 0.00352648 + 0.00610805i
\(70\) 0 0
\(71\) 4.46844 + 3.74946i 0.530306 + 0.444980i 0.868207 0.496202i \(-0.165272\pi\)
−0.337901 + 0.941182i \(0.609717\pi\)
\(72\) −1.92752 2.29713i −0.227161 0.270720i
\(73\) −0.502654 0.0886314i −0.0588311 0.0103735i 0.144155 0.989555i \(-0.453954\pi\)
−0.202986 + 0.979182i \(0.565065\pi\)
\(74\) 5.64650 2.05516i 0.656393 0.238907i
\(75\) 0 0
\(76\) −3.13950 + 3.02383i −0.360125 + 0.346857i
\(77\) 4.53061i 0.516311i
\(78\) 0.0295833 + 0.0812794i 0.00334965 + 0.00920307i
\(79\) −2.10729 + 11.9511i −0.237089 + 1.34460i 0.601080 + 0.799189i \(0.294737\pi\)
−0.838169 + 0.545411i \(0.816374\pi\)
\(80\) 0 0
\(81\) 6.88539 + 5.77753i 0.765044 + 0.641948i
\(82\) 7.85939 1.38582i 0.867924 0.153038i
\(83\) 5.39755 3.11628i 0.592459 0.342056i −0.173610 0.984814i \(-0.555543\pi\)
0.766069 + 0.642758i \(0.222210\pi\)
\(84\) 0.0332056 0.0575138i 0.00362303 0.00627527i
\(85\) 0 0
\(86\) 5.36981 + 1.95445i 0.579042 + 0.210754i
\(87\) 0.103344 + 0.0596659i 0.0110797 + 0.00639685i
\(88\) 2.13541 1.23288i 0.227635 0.131425i
\(89\) −2.95236 16.7437i −0.312949 1.77482i −0.583494 0.812117i \(-0.698315\pi\)
0.270545 0.962707i \(-0.412796\pi\)
\(90\) 0 0
\(91\) 3.36837 2.82640i 0.353101 0.296287i
\(92\) −1.59629 0.281470i −0.166425 0.0293452i
\(93\) 0.0433143 + 0.119005i 0.00449148 + 0.0123402i
\(94\) 12.4926 1.28852
\(95\) 0 0
\(96\) −0.0361439 −0.00368892
\(97\) −4.67194 12.8360i −0.474363 1.30330i −0.914214 0.405232i \(-0.867191\pi\)
0.439851 0.898071i \(-0.355031\pi\)
\(98\) 3.56887 + 0.629287i 0.360510 + 0.0635676i
\(99\) −5.66417 + 4.75280i −0.569270 + 0.477675i
\(100\) 0 0
\(101\) −1.85079 10.4964i −0.184161 1.04443i −0.927029 0.374990i \(-0.877646\pi\)
0.742868 0.669438i \(-0.233465\pi\)
\(102\) 0.211034 0.121841i 0.0208955 0.0120640i
\(103\) 8.44314 + 4.87465i 0.831927 + 0.480313i 0.854512 0.519431i \(-0.173856\pi\)
−0.0225848 + 0.999745i \(0.507190\pi\)
\(104\) −2.24877 0.818485i −0.220510 0.0802591i
\(105\) 0 0
\(106\) −0.960680 + 1.66395i −0.0933095 + 0.161617i
\(107\) −11.5058 + 6.64287i −1.11231 + 0.642191i −0.939426 0.342752i \(-0.888641\pi\)
−0.172881 + 0.984943i \(0.555308\pi\)
\(108\) 0.213522 0.0376497i 0.0205462 0.00362285i
\(109\) −1.10611 0.928135i −0.105946 0.0888992i 0.588276 0.808660i \(-0.299807\pi\)
−0.694222 + 0.719761i \(0.744251\pi\)
\(110\) 0 0
\(111\) −0.0377137 + 0.213885i −0.00357963 + 0.0203011i
\(112\) 0.628432 + 1.72660i 0.0593812 + 0.163149i
\(113\) 0.841529i 0.0791644i −0.999216 0.0395822i \(-0.987397\pi\)
0.999216 0.0395822i \(-0.0126027\pi\)
\(114\) −0.0379136 0.152918i −0.00355094 0.0143221i
\(115\) 0 0
\(116\) −3.10246 + 1.12920i −0.288056 + 0.104844i
\(117\) 7.06713 + 1.24612i 0.653356 + 0.115204i
\(118\) 3.05578 + 3.64174i 0.281308 + 0.335250i
\(119\) −9.48960 7.96272i −0.869910 0.729941i
\(120\) 0 0
\(121\) 2.46002 + 4.26089i 0.223639 + 0.387353i
\(122\) −11.8335 6.83209i −1.07136 0.618549i
\(123\) −0.0986562 + 0.271056i −0.00889553 + 0.0244403i
\(124\) −3.29253 1.19838i −0.295678 0.107618i
\(125\) 0 0
\(126\) −2.75492 4.77166i −0.245427 0.425093i
\(127\) 12.7885 2.25496i 1.13480 0.200095i 0.425469 0.904973i \(-0.360109\pi\)
0.709329 + 0.704878i \(0.248998\pi\)
\(128\) 0.642788 0.766044i 0.0568149 0.0677094i
\(129\) −0.158220 + 0.132763i −0.0139305 + 0.0116891i
\(130\) 0 0
\(131\) −8.39051 + 3.05389i −0.733082 + 0.266820i −0.681469 0.731847i \(-0.738658\pi\)
−0.0516131 + 0.998667i \(0.516436\pi\)
\(132\) 0.0891221i 0.00775708i
\(133\) −6.64571 + 4.46991i −0.576256 + 0.387590i
\(134\) −3.71765 −0.321156
\(135\) 0 0
\(136\) −1.17073 + 6.63956i −0.100390 + 0.569337i
\(137\) −2.86271 3.41165i −0.244578 0.291477i 0.629764 0.776786i \(-0.283151\pi\)
−0.874343 + 0.485309i \(0.838707\pi\)
\(138\) 0.0376586 0.0448798i 0.00320571 0.00382042i
\(139\) 0.210369 + 1.19306i 0.0178433 + 0.101194i 0.992429 0.122822i \(-0.0391943\pi\)
−0.974585 + 0.224016i \(0.928083\pi\)
\(140\) 0 0
\(141\) −0.225767 + 0.391039i −0.0190130 + 0.0329314i
\(142\) 1.99505 5.48135i 0.167421 0.459985i
\(143\) −2.01819 + 5.54492i −0.168769 + 0.463689i
\(144\) −1.49935 + 2.59694i −0.124946 + 0.216412i
\(145\) 0 0
\(146\) 0.0886314 + 0.502654i 0.00733519 + 0.0415999i
\(147\) −0.0841940 + 0.100339i −0.00694421 + 0.00827578i
\(148\) −3.86244 4.60307i −0.317490 0.378370i
\(149\) −1.61216 + 9.14300i −0.132073 + 0.749024i 0.844780 + 0.535114i \(0.179731\pi\)
−0.976853 + 0.213910i \(0.931380\pi\)
\(150\) 0 0
\(151\) −3.34570 −0.272269 −0.136135 0.990690i \(-0.543468\pi\)
−0.136135 + 0.990690i \(0.543468\pi\)
\(152\) 3.91524 + 1.91595i 0.317568 + 0.155404i
\(153\) 20.2171i 1.63446i
\(154\) 4.25738 1.54956i 0.343069 0.124867i
\(155\) 0 0
\(156\) 0.0662595 0.0555984i 0.00530501 0.00445143i
\(157\) 4.53369 5.40304i 0.361828 0.431210i −0.554163 0.832408i \(-0.686962\pi\)
0.915991 + 0.401198i \(0.131406\pi\)
\(158\) 11.9511 2.10729i 0.950775 0.167647i
\(159\) −0.0347227 0.0601415i −0.00275369 0.00476953i
\(160\) 0 0
\(161\) −2.79868 1.01864i −0.220567 0.0802798i
\(162\) 3.07416 8.44619i 0.241529 0.663595i
\(163\) 13.7316 + 7.92794i 1.07554 + 0.620964i 0.929690 0.368343i \(-0.120075\pi\)
0.145851 + 0.989307i \(0.453408\pi\)
\(164\) −3.99032 6.91143i −0.311591 0.539692i
\(165\) 0 0
\(166\) −4.77442 4.00621i −0.370567 0.310942i
\(167\) 8.75846 + 10.4379i 0.677750 + 0.807711i 0.989817 0.142349i \(-0.0454655\pi\)
−0.312066 + 0.950060i \(0.601021\pi\)
\(168\) −0.0654023 0.0115322i −0.00504590 0.000889728i
\(169\) −6.83449 + 2.48755i −0.525730 + 0.191350i
\(170\) 0 0
\(171\) −12.5599 3.61934i −0.960481 0.276778i
\(172\) 5.71443i 0.435721i
\(173\) −4.11774 11.3134i −0.313066 0.860142i −0.992034 0.125973i \(-0.959795\pi\)
0.678968 0.734168i \(-0.262428\pi\)
\(174\) 0.0207217 0.117519i 0.00157091 0.00890908i
\(175\) 0 0
\(176\) −1.88888 1.58496i −0.142380 0.119471i
\(177\) −0.169216 + 0.0298374i −0.0127191 + 0.00224271i
\(178\) −14.7241 + 8.50098i −1.10362 + 0.637175i
\(179\) 8.03649 13.9196i 0.600675 1.04040i −0.392044 0.919947i \(-0.628232\pi\)
0.992719 0.120454i \(-0.0384349\pi\)
\(180\) 0 0
\(181\) −5.40615 1.96768i −0.401836 0.146256i 0.133193 0.991090i \(-0.457477\pi\)
−0.535029 + 0.844834i \(0.679699\pi\)
\(182\) −3.80799 2.19855i −0.282267 0.162967i
\(183\) 0.427710 0.246939i 0.0316173 0.0182542i
\(184\) 0.281470 + 1.59629i 0.0207502 + 0.117680i
\(185\) 0 0
\(186\) 0.0970138 0.0814042i 0.00711339 0.00596885i
\(187\) 16.3715 + 2.88674i 1.19720 + 0.211099i
\(188\) −4.27274 11.7392i −0.311621 0.856172i
\(189\) 0.398381 0.0289779
\(190\) 0 0
\(191\) −20.5460 −1.48666 −0.743329 0.668926i \(-0.766754\pi\)
−0.743329 + 0.668926i \(0.766754\pi\)
\(192\) 0.0123619 + 0.0339642i 0.000892147 + 0.00245115i
\(193\) −12.3238 2.17302i −0.887089 0.156418i −0.288506 0.957478i \(-0.593158\pi\)
−0.598583 + 0.801060i \(0.704269\pi\)
\(194\) −10.4640 + 8.78037i −0.751274 + 0.630394i
\(195\) 0 0
\(196\) −0.629287 3.56887i −0.0449491 0.254919i
\(197\) −5.21647 + 3.01173i −0.371658 + 0.214577i −0.674183 0.738565i \(-0.735504\pi\)
0.302524 + 0.953142i \(0.402171\pi\)
\(198\) 6.40343 + 3.69702i 0.455072 + 0.262736i
\(199\) 10.5749 + 3.84894i 0.749633 + 0.272844i 0.688451 0.725283i \(-0.258291\pi\)
0.0611814 + 0.998127i \(0.480513\pi\)
\(200\) 0 0
\(201\) 0.0671851 0.116368i 0.00473887 0.00820797i
\(202\) −9.23035 + 5.32914i −0.649445 + 0.374957i
\(203\) −5.97418 + 1.05341i −0.419305 + 0.0739349i
\(204\) −0.186671 0.156636i −0.0130696 0.0109667i
\(205\) 0 0
\(206\) 1.69295 9.60119i 0.117953 0.668946i
\(207\) −1.66244 4.56751i −0.115547 0.317464i
\(208\) 2.39309i 0.165931i
\(209\) 4.72427 9.65403i 0.326785 0.667783i
\(210\) 0 0
\(211\) −13.2192 + 4.81141i −0.910049 + 0.331231i −0.754273 0.656561i \(-0.772010\pi\)
−0.155777 + 0.987792i \(0.549788\pi\)
\(212\) 1.89217 + 0.333641i 0.129955 + 0.0229145i
\(213\) 0.135520 + 0.161507i 0.00928570 + 0.0110663i
\(214\) 10.1775 + 8.53991i 0.695718 + 0.583776i
\(215\) 0 0
\(216\) −0.108408 0.187768i −0.00737624 0.0127760i
\(217\) −5.57547 3.21900i −0.378487 0.218520i
\(218\) −0.493850 + 1.35684i −0.0334477 + 0.0918969i
\(219\) −0.0173356 0.00630963i −0.00117143 0.000426366i
\(220\) 0 0
\(221\) −8.06709 13.9726i −0.542651 0.939899i
\(222\) 0.213885 0.0377137i 0.0143550 0.00253118i
\(223\) −16.2641 + 19.3828i −1.08913 + 1.29797i −0.137570 + 0.990492i \(0.543929\pi\)
−0.951555 + 0.307477i \(0.900515\pi\)
\(224\) 1.40754 1.18107i 0.0940451 0.0789132i
\(225\) 0 0
\(226\) −0.790779 + 0.287820i −0.0526018 + 0.0191455i
\(227\) 22.0111i 1.46093i −0.682951 0.730464i \(-0.739304\pi\)
0.682951 0.730464i \(-0.260696\pi\)
\(228\) −0.130728 + 0.0879281i −0.00865770 + 0.00582318i
\(229\) 5.29529 0.349923 0.174961 0.984575i \(-0.444020\pi\)
0.174961 + 0.984575i \(0.444020\pi\)
\(230\) 0 0
\(231\) −0.0284356 + 0.161266i −0.00187092 + 0.0106105i
\(232\) 2.12221 + 2.52915i 0.139330 + 0.166047i
\(233\) −13.2104 + 15.7436i −0.865445 + 1.03140i 0.133740 + 0.991016i \(0.457301\pi\)
−0.999184 + 0.0403803i \(0.987143\pi\)
\(234\) −1.24612 7.06713i −0.0814617 0.461992i
\(235\) 0 0
\(236\) 2.37698 4.11705i 0.154728 0.267997i
\(237\) −0.150017 + 0.412170i −0.00974468 + 0.0267733i
\(238\) −4.23688 + 11.6407i −0.274636 + 0.754556i
\(239\) 0.443585 0.768312i 0.0286931 0.0496980i −0.851322 0.524643i \(-0.824199\pi\)
0.880015 + 0.474945i \(0.157532\pi\)
\(240\) 0 0
\(241\) −0.694839 3.94063i −0.0447585 0.253838i 0.954216 0.299119i \(-0.0966928\pi\)
−0.998974 + 0.0452809i \(0.985582\pi\)
\(242\) 3.16255 3.76898i 0.203296 0.242279i
\(243\) 0.626923 + 0.747138i 0.0402171 + 0.0479289i
\(244\) −2.37276 + 13.4566i −0.151900 + 0.861471i
\(245\) 0 0
\(246\) 0.288451 0.0183910
\(247\) −10.1247 + 2.51027i −0.644219 + 0.159724i
\(248\) 3.50384i 0.222494i
\(249\) 0.211684 0.0770466i 0.0134149 0.00488263i
\(250\) 0 0
\(251\) −9.70480 + 8.14329i −0.612561 + 0.514000i −0.895455 0.445151i \(-0.853150\pi\)
0.282894 + 0.959151i \(0.408706\pi\)
\(252\) −3.54165 + 4.22078i −0.223103 + 0.265884i
\(253\) 3.93607 0.694035i 0.247459 0.0436336i
\(254\) −6.49290 11.2460i −0.407401 0.705639i
\(255\) 0 0
\(256\) −0.939693 0.342020i −0.0587308 0.0213763i
\(257\) 4.46158 12.2581i 0.278306 0.764639i −0.719249 0.694752i \(-0.755514\pi\)
0.997555 0.0698866i \(-0.0222637\pi\)
\(258\) 0.178871 + 0.103271i 0.0111360 + 0.00642937i
\(259\) −5.52039 9.56160i −0.343021 0.594129i
\(260\) 0 0
\(261\) −7.58415 6.36386i −0.469447 0.393913i
\(262\) 5.73944 + 6.84000i 0.354584 + 0.422577i
\(263\) 27.8224 + 4.90583i 1.71560 + 0.302507i 0.943100 0.332508i \(-0.107895\pi\)
0.772500 + 0.635015i \(0.219006\pi\)
\(264\) 0.0837473 0.0304815i 0.00515429 0.00187601i
\(265\) 0 0
\(266\) 6.47331 + 4.71612i 0.396904 + 0.289164i
\(267\) 0.614517i 0.0376079i
\(268\) 1.27151 + 3.49344i 0.0776698 + 0.213396i
\(269\) −5.13013 + 29.0944i −0.312789 + 1.77392i 0.271566 + 0.962420i \(0.412458\pi\)
−0.584356 + 0.811498i \(0.698653\pi\)
\(270\) 0 0
\(271\) 20.6918 + 17.3624i 1.25693 + 1.05469i 0.996001 + 0.0893367i \(0.0284747\pi\)
0.260933 + 0.965357i \(0.415970\pi\)
\(272\) 6.63956 1.17073i 0.402582 0.0709861i
\(273\) 0.137636 0.0794641i 0.00833010 0.00480938i
\(274\) −2.22680 + 3.85692i −0.134526 + 0.233005i
\(275\) 0 0
\(276\) −0.0550532 0.0200377i −0.00331381 0.00120613i
\(277\) −20.9386 12.0889i −1.25808 0.726352i −0.285378 0.958415i \(-0.592119\pi\)
−0.972701 + 0.232063i \(0.925453\pi\)
\(278\) 1.04916 0.605735i 0.0629246 0.0363295i
\(279\) −1.82451 10.3473i −0.109231 0.619478i
\(280\) 0 0
\(281\) 1.83928 1.54334i 0.109722 0.0920681i −0.586276 0.810111i \(-0.699407\pi\)
0.695998 + 0.718043i \(0.254962\pi\)
\(282\) 0.444673 + 0.0784079i 0.0264799 + 0.00466912i
\(283\) −2.78778 7.65937i −0.165716 0.455302i 0.828842 0.559483i \(-0.189000\pi\)
−0.994558 + 0.104181i \(0.966778\pi\)
\(284\) −5.83313 −0.346133
\(285\) 0 0
\(286\) 5.90078 0.348920
\(287\) −5.01528 13.7794i −0.296043 0.813371i
\(288\) 2.95314 + 0.520718i 0.174015 + 0.0306836i
\(289\) −21.7973 + 18.2901i −1.28219 + 1.07589i
\(290\) 0 0
\(291\) −0.0857335 0.486219i −0.00502579 0.0285027i
\(292\) 0.442026 0.255204i 0.0258676 0.0149347i
\(293\) −7.96532 4.59878i −0.465339 0.268664i 0.248947 0.968517i \(-0.419915\pi\)
−0.714287 + 0.699853i \(0.753249\pi\)
\(294\) 0.123083 + 0.0447987i 0.00717837 + 0.00261271i
\(295\) 0 0
\(296\) −3.00444 + 5.20385i −0.174630 + 0.302467i
\(297\) −0.462991 + 0.267308i −0.0268655 + 0.0155108i
\(298\) 9.14300 1.61216i 0.529640 0.0933898i
\(299\) −2.97149 2.49338i −0.171846 0.144196i
\(300\) 0 0
\(301\) 1.82326 10.3402i 0.105091 0.596002i
\(302\) 1.14430 + 3.14393i 0.0658469 + 0.180913i
\(303\) 0.385232i 0.0221310i
\(304\) 0.461316 4.33442i 0.0264583 0.248596i
\(305\) 0 0
\(306\) −18.9979 + 6.91467i −1.08604 + 0.395285i
\(307\) 27.9165 + 4.92243i 1.59328 + 0.280938i 0.898728 0.438506i \(-0.144492\pi\)
0.694550 + 0.719444i \(0.255603\pi\)
\(308\) −2.91222 3.47065i −0.165939 0.197758i
\(309\) 0.269937 + 0.226504i 0.0153562 + 0.0128854i
\(310\) 0 0
\(311\) −8.72043 15.1042i −0.494490 0.856482i 0.505490 0.862833i \(-0.331312\pi\)
−0.999980 + 0.00635057i \(0.997979\pi\)
\(312\) −0.0749075 0.0432478i −0.00424080 0.00244843i
\(313\) −4.51409 + 12.4024i −0.255151 + 0.701022i 0.744298 + 0.667847i \(0.232784\pi\)
−0.999450 + 0.0331750i \(0.989438\pi\)
\(314\) −6.62781 2.41233i −0.374029 0.136135i
\(315\) 0 0
\(316\) −6.06771 10.5096i −0.341336 0.591210i
\(317\) −12.0997 + 2.13351i −0.679588 + 0.119830i −0.502778 0.864415i \(-0.667689\pi\)
−0.176810 + 0.984245i \(0.556578\pi\)
\(318\) −0.0446387 + 0.0531983i −0.00250321 + 0.00298321i
\(319\) 6.23627 5.23285i 0.349164 0.292983i
\(320\) 0 0
\(321\) −0.451239 + 0.164238i −0.0251857 + 0.00916685i
\(322\) 2.97829i 0.165974i
\(323\) 11.9178 + 26.8626i 0.663124 + 1.49467i
\(324\) −8.98824 −0.499347
\(325\) 0 0
\(326\) 2.75334 15.6150i 0.152494 0.864834i
\(327\) −0.0335464 0.0399791i −0.00185512 0.00221085i
\(328\) −5.12985 + 6.11352i −0.283249 + 0.337563i
\(329\) −3.98594 22.6054i −0.219752 1.24628i
\(330\) 0 0
\(331\) −0.498297 + 0.863076i −0.0273889 + 0.0474389i −0.879395 0.476093i \(-0.842053\pi\)
0.852006 + 0.523532i \(0.175386\pi\)
\(332\) −2.13166 + 5.85669i −0.116990 + 0.321428i
\(333\) 6.16279 16.9321i 0.337719 0.927875i
\(334\) 6.81287 11.8002i 0.372784 0.645681i
\(335\) 0 0
\(336\) 0.0115322 + 0.0654023i 0.000629132 + 0.00356799i
\(337\) 5.50174 6.55672i 0.299699 0.357167i −0.595088 0.803660i \(-0.702883\pi\)
0.894787 + 0.446493i \(0.147327\pi\)
\(338\) 4.67507 + 5.57153i 0.254290 + 0.303051i
\(339\) 0.00528171 0.0299541i 0.000286863 0.00162688i
\(340\) 0 0
\(341\) 8.63961 0.467861
\(342\) 0.894680 + 13.0403i 0.0483788 + 0.705141i
\(343\) 19.5205i 1.05401i
\(344\) −5.36981 + 1.95445i −0.289521 + 0.105377i
\(345\) 0 0
\(346\) −9.22276 + 7.73882i −0.495819 + 0.416041i
\(347\) −4.26665 + 5.08479i −0.229046 + 0.272966i −0.868311 0.496020i \(-0.834794\pi\)
0.639265 + 0.768986i \(0.279239\pi\)
\(348\) −0.117519 + 0.0207217i −0.00629967 + 0.00111080i
\(349\) 15.5221 + 26.8851i 0.830881 + 1.43913i 0.897341 + 0.441339i \(0.145496\pi\)
−0.0664599 + 0.997789i \(0.521170\pi\)
\(350\) 0 0
\(351\) 0.487570 + 0.177461i 0.0260246 + 0.00947216i
\(352\) −0.843338 + 2.31705i −0.0449501 + 0.123499i
\(353\) −15.3831 8.88145i −0.818761 0.472712i 0.0312277 0.999512i \(-0.490058\pi\)
−0.849989 + 0.526800i \(0.823392\pi\)
\(354\) 0.0859133 + 0.148806i 0.00456624 + 0.00790896i
\(355\) 0 0
\(356\) 13.0243 + 10.9287i 0.690284 + 0.579217i
\(357\) −0.287804 0.342991i −0.0152322 0.0181530i
\(358\) −15.8288 2.79104i −0.836578 0.147511i
\(359\) −4.82640 + 1.75667i −0.254728 + 0.0927134i −0.466228 0.884665i \(-0.654387\pi\)
0.211500 + 0.977378i \(0.432165\pi\)
\(360\) 0 0
\(361\) 18.8220 2.59491i 0.990630 0.136574i
\(362\) 5.75310i 0.302376i
\(363\) 0.0608214 + 0.167105i 0.00319229 + 0.00877076i
\(364\) −0.763547 + 4.33029i −0.0400207 + 0.226969i
\(365\) 0 0
\(366\) −0.378332 0.317458i −0.0197757 0.0165938i
\(367\) −5.65859 + 0.997763i −0.295376 + 0.0520828i −0.319372 0.947629i \(-0.603472\pi\)
0.0239963 + 0.999712i \(0.492361\pi\)
\(368\) 1.40376 0.810460i 0.0731759 0.0422481i
\(369\) 11.9657 20.7253i 0.622911 1.07891i
\(370\) 0 0
\(371\) 3.31742 + 1.20744i 0.172232 + 0.0626873i
\(372\) −0.109676 0.0633212i −0.00568641 0.00328305i
\(373\) 32.7231 18.8927i 1.69434 0.978227i 0.743399 0.668848i \(-0.233212\pi\)
0.950939 0.309379i \(-0.100121\pi\)
\(374\) −2.88674 16.3715i −0.149270 0.846551i
\(375\) 0 0
\(376\) −9.56992 + 8.03012i −0.493531 + 0.414122i
\(377\) −7.78093 1.37199i −0.400738 0.0706610i
\(378\) −0.136254 0.374355i −0.00700816 0.0192548i
\(379\) 32.2663 1.65741 0.828703 0.559689i \(-0.189079\pi\)
0.828703 + 0.559689i \(0.189079\pi\)
\(380\) 0 0
\(381\) 0.469358 0.0240459
\(382\) 7.02715 + 19.3069i 0.359540 + 0.987829i
\(383\) −21.4490 3.78204i −1.09599 0.193253i −0.403715 0.914885i \(-0.632281\pi\)
−0.692277 + 0.721632i \(0.743392\pi\)
\(384\) 0.0276878 0.0232329i 0.00141294 0.00118560i
\(385\) 0 0
\(386\) 2.17302 + 12.3238i 0.110604 + 0.627267i
\(387\) 14.8401 8.56792i 0.754363 0.435532i
\(388\) 11.8298 + 6.82991i 0.600565 + 0.346736i
\(389\) 9.10078 + 3.31241i 0.461428 + 0.167946i 0.562265 0.826957i \(-0.309930\pi\)
−0.100837 + 0.994903i \(0.532152\pi\)
\(390\) 0 0
\(391\) −5.46410 + 9.46411i −0.276332 + 0.478620i
\(392\) −3.13841 + 1.81196i −0.158514 + 0.0915178i
\(393\) −0.317826 + 0.0560412i −0.0160322 + 0.00282691i
\(394\) 4.61424 + 3.87181i 0.232462 + 0.195059i
\(395\) 0 0
\(396\) 1.28396 7.28171i 0.0645216 0.365920i
\(397\) −6.29151 17.2858i −0.315762 0.867549i −0.991465 0.130375i \(-0.958382\pi\)
0.675703 0.737174i \(-0.263840\pi\)
\(398\) 11.2535i 0.564089i
\(399\) −0.264607 + 0.117395i −0.0132469 + 0.00587710i
\(400\) 0 0
\(401\) 34.3332 12.4963i 1.71452 0.624034i 0.717178 0.696890i \(-0.245433\pi\)
0.997342 + 0.0728556i \(0.0232112\pi\)
\(402\) −0.132329 0.0233331i −0.00659996 0.00116375i
\(403\) −5.38978 6.42329i −0.268484 0.319967i
\(404\) 8.16472 + 6.85102i 0.406210 + 0.340851i
\(405\) 0 0
\(406\) 3.03317 + 5.25361i 0.150534 + 0.260732i
\(407\) 12.8314 + 7.40822i 0.636030 + 0.367212i
\(408\) −0.0833440 + 0.228986i −0.00412614 + 0.0113365i
\(409\) 34.1168 + 12.4175i 1.68697 + 0.614005i 0.994238 0.107194i \(-0.0341866\pi\)
0.692728 + 0.721199i \(0.256409\pi\)
\(410\) 0 0
\(411\) −0.0804851 0.139404i −0.00397004 0.00687631i
\(412\) −9.60119 + 1.69295i −0.473016 + 0.0834056i
\(413\) 5.61473 6.69138i 0.276283 0.329261i
\(414\) −3.72347 + 3.12436i −0.182998 + 0.153554i
\(415\) 0 0
\(416\) 2.24877 0.818485i 0.110255 0.0401295i
\(417\) 0.0437872i 0.00214427i
\(418\) −10.6876 1.13749i −0.522749 0.0556366i
\(419\) −39.5001 −1.92970 −0.964852 0.262793i \(-0.915356\pi\)
−0.964852 + 0.262793i \(0.915356\pi\)
\(420\) 0 0
\(421\) −2.44853 + 13.8863i −0.119334 + 0.676777i 0.865179 + 0.501464i \(0.167205\pi\)
−0.984513 + 0.175313i \(0.943906\pi\)
\(422\) 9.04248 + 10.7764i 0.440181 + 0.524588i
\(423\) 24.0799 28.6973i 1.17080 1.39531i
\(424\) −0.333641 1.89217i −0.0162030 0.0918919i
\(425\) 0 0
\(426\) 0.105416 0.182586i 0.00510743 0.00884632i
\(427\) −8.58701 + 23.5926i −0.415554 + 1.14173i
\(428\) 4.54399 12.4845i 0.219642 0.603462i
\(429\) −0.106639 + 0.184703i −0.00514856 + 0.00891757i
\(430\) 0 0
\(431\) 3.65410 + 20.7234i 0.176012 + 0.998213i 0.936969 + 0.349411i \(0.113618\pi\)
−0.760958 + 0.648802i \(0.775270\pi\)
\(432\) −0.139367 + 0.166091i −0.00670529 + 0.00799105i
\(433\) −3.37958 4.02763i −0.162412 0.193555i 0.678701 0.734415i \(-0.262543\pi\)
−0.841113 + 0.540860i \(0.818099\pi\)
\(434\) −1.11795 + 6.34019i −0.0536631 + 0.304339i
\(435\) 0 0
\(436\) 1.44392 0.0691513
\(437\) 4.90138 + 5.08887i 0.234465 + 0.243434i
\(438\) 0.0184481i 0.000881486i
\(439\) 34.2836 12.4782i 1.63627 0.595552i 0.649885 0.760032i \(-0.274817\pi\)
0.986380 + 0.164480i \(0.0525947\pi\)
\(440\) 0 0
\(441\) 8.32463 6.98519i 0.396411 0.332628i
\(442\) −10.3709 + 12.3595i −0.493291 + 0.587881i
\(443\) 9.09046 1.60289i 0.431901 0.0761558i 0.0465285 0.998917i \(-0.485184\pi\)
0.385372 + 0.922761i \(0.374073\pi\)
\(444\) −0.108592 0.188087i −0.00515356 0.00892623i
\(445\) 0 0
\(446\) 23.7765 + 8.65395i 1.12585 + 0.409777i
\(447\) −0.114769 + 0.315325i −0.00542838 + 0.0149144i
\(448\) −1.59124 0.918706i −0.0751792 0.0434048i
\(449\) −11.4148 19.7711i −0.538699 0.933054i −0.998974 0.0452780i \(-0.985583\pi\)
0.460275 0.887776i \(-0.347751\pi\)
\(450\) 0 0
\(451\) 15.0744 + 12.6490i 0.709828 + 0.595616i
\(452\) 0.540925 + 0.644649i 0.0254430 + 0.0303217i
\(453\) −0.119090 0.0209987i −0.00559532 0.000986605i
\(454\) −20.6837 + 7.52824i −0.970733 + 0.353318i
\(455\) 0 0
\(456\) 0.127337 + 0.0927713i 0.00596311 + 0.00434442i
\(457\) 7.82515i 0.366045i 0.983109 + 0.183022i \(0.0585881\pi\)
−0.983109 + 0.183022i \(0.941412\pi\)
\(458\) −1.81110 4.97594i −0.0846269 0.232511i
\(459\) 0.253834 1.43956i 0.0118480 0.0671931i
\(460\) 0 0
\(461\) −3.01184 2.52724i −0.140276 0.117705i 0.569950 0.821679i \(-0.306963\pi\)
−0.710225 + 0.703974i \(0.751407\pi\)
\(462\) 0.161266 0.0284356i 0.00750278 0.00132294i
\(463\) −14.9791 + 8.64820i −0.696139 + 0.401916i −0.805908 0.592041i \(-0.798322\pi\)
0.109769 + 0.993957i \(0.464989\pi\)
\(464\) 1.65079 2.85924i 0.0766358 0.132737i
\(465\) 0 0
\(466\) 19.3124 + 7.02913i 0.894628 + 0.325618i
\(467\) −18.2097 10.5134i −0.842644 0.486501i 0.0155178 0.999880i \(-0.495060\pi\)
−0.858162 + 0.513379i \(0.828394\pi\)
\(468\) −6.21473 + 3.58807i −0.287276 + 0.165859i
\(469\) 1.18616 + 6.72707i 0.0547719 + 0.310627i
\(470\) 0 0
\(471\) 0.195287 0.163865i 0.00899836 0.00755052i
\(472\) −4.68173 0.825516i −0.215494 0.0379974i
\(473\) 4.81920 + 13.2406i 0.221587 + 0.608805i
\(474\) 0.438622 0.0201466
\(475\) 0 0
\(476\) 12.3878 0.567794
\(477\) 1.97057 + 5.41410i 0.0902263 + 0.247895i
\(478\) −0.873692 0.154055i −0.0399617 0.00704633i
\(479\) −16.1878 + 13.5832i −0.739640 + 0.620631i −0.932741 0.360547i \(-0.882590\pi\)
0.193101 + 0.981179i \(0.438145\pi\)
\(480\) 0 0
\(481\) −2.49703 14.1613i −0.113855 0.645702i
\(482\) −3.46533 + 2.00071i −0.157841 + 0.0911298i
\(483\) −0.0932252 0.0538236i −0.00424190 0.00244906i
\(484\) −4.62333 1.68276i −0.210151 0.0764889i
\(485\) 0 0
\(486\) 0.487660 0.844651i 0.0221207 0.0383142i
\(487\) 14.8959 8.60015i 0.674998 0.389710i −0.122970 0.992410i \(-0.539242\pi\)
0.797968 + 0.602700i \(0.205909\pi\)
\(488\) 13.4566 2.37276i 0.609152 0.107410i
\(489\) 0.439015 + 0.368377i 0.0198529 + 0.0166586i
\(490\) 0 0
\(491\) −5.75424 + 32.6339i −0.259685 + 1.47275i 0.524068 + 0.851676i \(0.324414\pi\)
−0.783753 + 0.621072i \(0.786697\pi\)
\(492\) −0.0986562 0.271056i −0.00444776 0.0122201i
\(493\) 22.2591i 1.00250i
\(494\) 5.82173 + 8.65554i 0.261932 + 0.389431i
\(495\) 0 0
\(496\) 3.29253 1.19838i 0.147839 0.0538090i
\(497\) −10.5550 1.86114i −0.473458 0.0834834i
\(498\) −0.144800 0.172566i −0.00648865 0.00773287i
\(499\) 24.4903 + 20.5498i 1.09634 + 0.919936i 0.997173 0.0751346i \(-0.0239386\pi\)
0.0991642 + 0.995071i \(0.468383\pi\)
\(500\) 0 0
\(501\) 0.246244 + 0.426507i 0.0110014 + 0.0190549i
\(502\) 10.9714 + 6.33436i 0.489679 + 0.282716i
\(503\) −8.63311 + 23.7193i −0.384931 + 1.05759i 0.584321 + 0.811523i \(0.301361\pi\)
−0.969253 + 0.246068i \(0.920861\pi\)
\(504\) 5.17755 + 1.88447i 0.230626 + 0.0839411i
\(505\) 0 0
\(506\) −1.99840 3.46132i −0.0888395 0.153875i
\(507\) −0.258885 + 0.0456484i −0.0114975 + 0.00202732i
\(508\) −8.34711 + 9.94770i −0.370343 + 0.441358i
\(509\) 13.0617 10.9600i 0.578948 0.485795i −0.305654 0.952143i \(-0.598875\pi\)
0.884601 + 0.466348i \(0.154430\pi\)
\(510\) 0 0
\(511\) 0.881271 0.320756i 0.0389851 0.0141894i
\(512\) 1.00000i 0.0441942i
\(513\) −0.848888 0.415410i −0.0374793 0.0183408i
\(514\) −13.0448 −0.575381
\(515\) 0 0
\(516\) 0.0358656 0.203404i 0.00157890 0.00895437i
\(517\) 19.8003 + 23.5971i 0.870816 + 1.03780i
\(518\) −7.09688 + 8.45773i −0.311819 + 0.371612i
\(519\) −0.0755636 0.428542i −0.00331687 0.0188109i
\(520\) 0 0
\(521\) 3.40256 5.89342i 0.149069 0.258195i −0.781815 0.623511i \(-0.785706\pi\)
0.930884 + 0.365316i \(0.119039\pi\)
\(522\) −3.38614 + 9.30333i −0.148207 + 0.407196i
\(523\) 1.78561 4.90593i 0.0780794 0.214521i −0.894511 0.447045i \(-0.852476\pi\)
0.972591 + 0.232524i \(0.0746984\pi\)
\(524\) 4.46449 7.73273i 0.195032 0.337806i
\(525\) 0 0
\(526\) −4.90583 27.8224i −0.213904 1.21311i
\(527\) −15.1845 + 18.0961i −0.661445 + 0.788280i
\(528\) −0.0572866 0.0682715i −0.00249308 0.00297113i
\(529\) 3.53767 20.0631i 0.153812 0.872309i
\(530\) 0 0
\(531\) 14.2557 0.618643
\(532\) 2.21770 7.69593i 0.0961496 0.333661i
\(533\) 19.0984i 0.827243i
\(534\) −0.577457 + 0.210177i −0.0249890 + 0.00909526i
\(535\) 0 0
\(536\) 2.84788 2.38966i 0.123010 0.103217i
\(537\) 0.373421 0.445026i 0.0161143 0.0192043i
\(538\) 29.0944 5.13013i 1.25435 0.221176i
\(539\) 4.46785 + 7.73855i 0.192444 + 0.333323i
\(540\) 0 0
\(541\) 24.5890 + 8.94968i 1.05717 + 0.384777i 0.811363 0.584543i \(-0.198726\pi\)
0.245803 + 0.969320i \(0.420948\pi\)
\(542\) 9.23836 25.3822i 0.396822 1.09026i
\(543\) −0.180081 0.103970i −0.00772802 0.00446177i
\(544\) −3.37099 5.83873i −0.144530 0.250333i
\(545\) 0 0
\(546\) −0.121746 0.102157i −0.00521025 0.00437192i
\(547\) −22.8424 27.2225i −0.976671 1.16395i −0.986461 0.163999i \(-0.947561\pi\)
0.00978982 0.999952i \(-0.496884\pi\)
\(548\) 4.38593 + 0.773358i 0.187358 + 0.0330362i
\(549\) −38.5036 + 14.0142i −1.64330 + 0.598111i
\(550\) 0 0
\(551\) 13.8285 + 3.98490i 0.589114 + 0.169763i
\(552\) 0.0585864i 0.00249360i
\(553\) −7.62628 20.9530i −0.324303 0.891014i
\(554\) −4.19844 + 23.8105i −0.178374 + 1.01161i
\(555\) 0 0
\(556\) −0.928039 0.778717i −0.0393576 0.0330250i
\(557\) 30.2250 5.32949i 1.28068 0.225818i 0.508409 0.861116i \(-0.330234\pi\)
0.772267 + 0.635298i \(0.219123\pi\)
\(558\) −9.09928 + 5.25347i −0.385203 + 0.222397i
\(559\) 6.83758 11.8430i 0.289199 0.500907i
\(560\) 0 0
\(561\) 0.564623 + 0.205506i 0.0238384 + 0.00867647i
\(562\) −2.07934 1.20051i −0.0877116 0.0506403i
\(563\) 27.0238 15.6022i 1.13892 0.657553i 0.192754 0.981247i \(-0.438258\pi\)
0.946162 + 0.323694i \(0.104925\pi\)
\(564\) −0.0784079 0.444673i −0.00330157 0.0187241i
\(565\) 0 0
\(566\) −6.24398 + 5.23932i −0.262454 + 0.220225i
\(567\) −16.2642 2.86782i −0.683032 0.120437i
\(568\) 1.99505 + 5.48135i 0.0837104 + 0.229992i
\(569\) 20.6053 0.863820 0.431910 0.901917i \(-0.357840\pi\)
0.431910 + 0.901917i \(0.357840\pi\)
\(570\) 0 0
\(571\) 4.38785 0.183626 0.0918129 0.995776i \(-0.470734\pi\)
0.0918129 + 0.995776i \(0.470734\pi\)
\(572\) −2.01819 5.54492i −0.0843846 0.231845i
\(573\) −0.731332 0.128953i −0.0305518 0.00538711i
\(574\) −11.2330 + 9.42565i −0.468858 + 0.393419i
\(575\) 0 0
\(576\) −0.520718 2.95314i −0.0216966 0.123047i
\(577\) −25.8786 + 14.9410i −1.07734 + 0.622004i −0.930178 0.367109i \(-0.880348\pi\)
−0.147164 + 0.989112i \(0.547014\pi\)
\(578\) 24.6422 + 14.2272i 1.02498 + 0.591772i
\(579\) −0.425026 0.154697i −0.0176635 0.00642898i
\(580\) 0 0
\(581\) −5.72589 + 9.91753i −0.237550 + 0.411448i
\(582\) −0.427574 + 0.246860i −0.0177235 + 0.0102327i
\(583\) −4.66563 + 0.822676i −0.193231 + 0.0340718i
\(584\) −0.390995 0.328084i −0.0161795 0.0135762i
\(585\) 0 0
\(586\) −1.59714 + 9.05783i −0.0659773 + 0.374176i
\(587\) 13.4687 + 37.0049i 0.555912 + 1.52736i 0.825513 + 0.564383i \(0.190886\pi\)
−0.269601 + 0.962972i \(0.586892\pi\)
\(588\) 0.130983i 0.00540163i
\(589\) 8.52387 + 12.6730i 0.351220 + 0.522181i
\(590\) 0 0
\(591\) −0.204582 + 0.0744617i −0.00841538 + 0.00306295i
\(592\) 5.91759 + 1.04343i 0.243212 + 0.0428848i
\(593\) −25.7834 30.7274i −1.05880 1.26182i −0.963880 0.266338i \(-0.914186\pi\)
−0.0949157 0.995485i \(-0.530258\pi\)
\(594\) 0.409540 + 0.343645i 0.0168036 + 0.0140999i
\(595\) 0 0
\(596\) −4.64202 8.04022i −0.190145 0.329340i
\(597\) 0.352253 + 0.203373i 0.0144168 + 0.00832352i
\(598\) −1.32670 + 3.64507i −0.0542527 + 0.149058i
\(599\) 29.5623 + 10.7598i 1.20788 + 0.439634i 0.865970 0.500097i \(-0.166702\pi\)
0.341915 + 0.939731i \(0.388924\pi\)
\(600\) 0 0
\(601\) 17.2445 + 29.8683i 0.703418 + 1.21836i 0.967260 + 0.253789i \(0.0816769\pi\)
−0.263842 + 0.964566i \(0.584990\pi\)
\(602\) −10.3402 + 1.82326i −0.421437 + 0.0743107i
\(603\) −7.16585 + 8.53992i −0.291816 + 0.347773i
\(604\) 2.56296 2.15058i 0.104285 0.0875057i
\(605\) 0 0
\(606\) −0.362000 + 0.131757i −0.0147052 + 0.00535227i
\(607\) 12.9979i 0.527568i −0.964582 0.263784i \(-0.915029\pi\)
0.964582 0.263784i \(-0.0849706\pi\)
\(608\) −4.23080 + 1.04896i −0.171582 + 0.0425411i
\(609\) −0.219261 −0.00888492
\(610\) 0 0
\(611\) 5.19139 29.4418i 0.210021 1.19109i
\(612\) 12.9953 + 15.4872i 0.525305 + 0.626034i
\(613\) −5.59985 + 6.67364i −0.226176 + 0.269546i −0.867184 0.497989i \(-0.834072\pi\)
0.641008 + 0.767534i \(0.278517\pi\)
\(614\) −4.92243 27.9165i −0.198653 1.12662i
\(615\) 0 0
\(616\) −2.26530 + 3.92362i −0.0912717 + 0.158087i
\(617\) 8.33044 22.8877i 0.335371 0.921424i −0.651318 0.758805i \(-0.725784\pi\)
0.986689 0.162619i \(-0.0519941\pi\)
\(618\) 0.120520 0.331127i 0.00484804 0.0133199i
\(619\) 0.822483 1.42458i 0.0330584 0.0572588i −0.849023 0.528356i \(-0.822809\pi\)
0.882081 + 0.471097i \(0.156142\pi\)
\(620\) 0 0
\(621\) −0.0610272 0.346102i −0.00244894 0.0138886i
\(622\) −11.2108 + 13.3605i −0.449511 + 0.535706i
\(623\) 20.0804 + 23.9309i 0.804505 + 0.958772i
\(624\) −0.0150198 + 0.0851816i −0.000601274 + 0.00340999i
\(625\) 0 0
\(626\) 13.1983 0.527510
\(627\) 0.228751 0.313982i 0.00913545 0.0125392i
\(628\) 7.05317i 0.281452i
\(629\) −38.0686 + 13.8558i −1.51790 + 0.552469i
\(630\) 0 0
\(631\) −33.3220 + 27.9605i −1.32653 + 1.11309i −0.341651 + 0.939827i \(0.610986\pi\)
−0.984876 + 0.173261i \(0.944570\pi\)
\(632\) −7.80050 + 9.29628i −0.310287 + 0.369786i
\(633\) −0.500734 + 0.0882929i −0.0199024 + 0.00350933i
\(634\) 6.14319 + 10.6403i 0.243977 + 0.422581i
\(635\) 0 0
\(636\) 0.0652574 + 0.0237517i 0.00258762 + 0.000941818i
\(637\) 2.96613 8.14936i 0.117522 0.322890i
\(638\) −7.05020 4.07043i −0.279120 0.161150i
\(639\) −8.74589 15.1483i −0.345982 0.599258i
\(640\) 0 0
\(641\) −28.2069 23.6684i −1.11411 0.934846i −0.115814 0.993271i \(-0.536948\pi\)
−0.998292 + 0.0584253i \(0.981392\pi\)
\(642\) 0.308666 + 0.367854i 0.0121821 + 0.0145180i
\(643\) −14.5118 2.55882i −0.572288 0.100910i −0.119988 0.992775i \(-0.538285\pi\)
−0.452301 + 0.891866i \(0.649397\pi\)
\(644\) 2.79868 1.01864i 0.110284 0.0401399i
\(645\) 0 0
\(646\) 21.1664 20.3866i 0.832783 0.802100i
\(647\) 6.04813i 0.237776i 0.992908 + 0.118888i \(0.0379330\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(648\) 3.07416 + 8.44619i 0.120764 + 0.331798i
\(649\) −2.03552 + 11.5440i −0.0799012 + 0.453142i
\(650\) 0 0
\(651\) −0.178254 0.149573i −0.00698633 0.00586223i
\(652\) −15.6150 + 2.75334i −0.611530 + 0.107829i
\(653\) −2.50167 + 1.44434i −0.0978978 + 0.0565213i −0.548150 0.836380i \(-0.684668\pi\)
0.450252 + 0.892902i \(0.351334\pi\)
\(654\) −0.0260945 + 0.0451970i −0.00102037 + 0.00176734i
\(655\) 0 0
\(656\) 7.49934 + 2.72954i 0.292800 + 0.106571i
\(657\) 1.32550 + 0.765278i 0.0517127 + 0.0298563i
\(658\) −19.8789 + 11.4771i −0.774958 + 0.447422i
\(659\) −2.83413 16.0731i −0.110402 0.626120i −0.988925 0.148419i \(-0.952581\pi\)
0.878523 0.477701i \(-0.158530\pi\)
\(660\) 0 0
\(661\) 21.8640 18.3461i 0.850410 0.713579i −0.109470 0.993990i \(-0.534915\pi\)
0.959880 + 0.280411i \(0.0904708\pi\)
\(662\) 0.981453 + 0.173057i 0.0381453 + 0.00672604i
\(663\) −0.199450 0.547984i −0.00774599 0.0212819i
\(664\) 6.23256 0.241870
\(665\) 0 0
\(666\) −18.0188 −0.698214
\(667\) 1.83035 + 5.02884i 0.0708714 + 0.194718i
\(668\) −13.4187 2.36609i −0.519187 0.0915466i
\(669\) −0.700571 + 0.587849i −0.0270856 + 0.0227275i
\(670\) 0 0
\(671\) −5.85065 33.1807i −0.225862 1.28093i
\(672\) 0.0575138 0.0332056i 0.00221864 0.00128093i
\(673\) −5.39921 3.11723i −0.208124 0.120161i 0.392315 0.919831i \(-0.371674\pi\)
−0.600439 + 0.799670i \(0.705008\pi\)
\(674\) −8.04300 2.92741i −0.309805 0.112760i
\(675\) 0 0
\(676\) 3.63656 6.29870i 0.139868 0.242258i
\(677\) 12.6570 7.30750i 0.486446 0.280850i −0.236653 0.971594i \(-0.576050\pi\)
0.723099 + 0.690744i \(0.242717\pi\)
\(678\) −0.0299541 + 0.00528171i −0.00115038 + 0.000202843i
\(679\) 19.2267 + 16.1331i 0.737854 + 0.619133i
\(680\) 0 0
\(681\) 0.138149 0.783481i 0.00529388 0.0300231i
\(682\) −2.95492 8.11858i −0.113150 0.310877i
\(683\) 47.0671i 1.80097i 0.434885 + 0.900486i \(0.356789\pi\)
−0.434885 + 0.900486i \(0.643211\pi\)
\(684\) 11.9479 5.30079i 0.456840 0.202681i
\(685\) 0 0
\(686\) −18.3433 + 6.67641i −0.700350 + 0.254906i
\(687\) 0.188485 + 0.0332350i 0.00719114 + 0.00126799i
\(688\) 3.67317 + 4.37751i 0.140038 + 0.166891i
\(689\) 3.52226 + 2.95553i 0.134188 + 0.112597i
\(690\) 0 0
\(691\) 13.6742 + 23.6844i 0.520191 + 0.900997i 0.999724 + 0.0234732i \(0.00747242\pi\)
−0.479534 + 0.877523i \(0.659194\pi\)
\(692\) 10.4265 + 6.01973i 0.396355 + 0.228836i
\(693\) 4.64665 12.7666i 0.176512 0.484962i
\(694\) 6.23742 + 2.27024i 0.236769 + 0.0861770i
\(695\) 0 0
\(696\) 0.0596659 + 0.103344i 0.00226163 + 0.00391726i
\(697\) −52.9879 + 9.34319i −2.00706 + 0.353899i
\(698\) 19.9549 23.7813i 0.755303 0.900135i
\(699\) −0.569035 + 0.477477i −0.0215229 + 0.0180598i
\(700\) 0 0
\(701\) −18.6359 + 6.78290i −0.703867 + 0.256187i −0.669061 0.743207i \(-0.733304\pi\)
−0.0348060 + 0.999394i \(0.511081\pi\)
\(702\) 0.518861i 0.0195831i
\(703\) 1.79279 + 26.1307i 0.0676164 + 0.985538i
\(704\) 2.46576 0.0929317
\(705\) 0 0
\(706\) −3.08450 + 17.4931i −0.116087 + 0.658360i
\(707\) 12.5881 + 15.0020i 0.473425 + 0.564206i
\(708\) 0.110448 0.131627i 0.00415089 0.00494684i
\(709\) −5.68008 32.2133i −0.213320 1.20980i −0.883799 0.467868i \(-0.845022\pi\)
0.670479 0.741929i \(-0.266089\pi\)
\(710\) 0 0
\(711\) 18.1952 31.5150i 0.682374 1.18191i
\(712\) 5.81501 15.9766i 0.217927 0.598749i
\(713\) −1.94248 + 5.33693i −0.0727466 + 0.199870i
\(714\) −0.223872 + 0.387757i −0.00837819 + 0.0145114i
\(715\) 0 0
\(716\) 2.79104 + 15.8288i 0.104306 + 0.591550i
\(717\) 0.0206115 0.0245638i 0.000769750 0.000917353i
\(718\) 3.30146 + 3.93452i 0.123209 + 0.146835i
\(719\) 0.563968 3.19842i 0.0210325 0.119281i −0.972484 0.232970i \(-0.925156\pi\)
0.993516 + 0.113689i \(0.0362667\pi\)
\(720\) 0 0
\(721\) −17.9135 −0.667132
\(722\) −8.87591 16.7994i −0.330327 0.625207i
\(723\) 0.144627i 0.00537873i
\(724\) 5.40615 1.96768i 0.200918 0.0731282i
\(725\) 0 0
\(726\) 0.136226 0.114307i 0.00505580 0.00424232i
\(727\) 12.4762 14.8686i 0.462718 0.551446i −0.483344 0.875430i \(-0.660578\pi\)
0.946062 + 0.323984i \(0.105023\pi\)
\(728\) 4.33029 0.763547i 0.160491 0.0282989i
\(729\) −13.4647 23.3216i −0.498694 0.863764i
\(730\) 0 0
\(731\) −36.2032 13.1769i −1.33902 0.487364i
\(732\) −0.168916 + 0.464093i −0.00624331 + 0.0171534i
\(733\) −10.4575 6.03763i −0.386256 0.223005i 0.294281 0.955719i \(-0.404920\pi\)
−0.680537 + 0.732714i \(0.738253\pi\)
\(734\) 2.87294 + 4.97608i 0.106042 + 0.183671i
\(735\) 0 0
\(736\) −1.24170 1.04191i −0.0457695 0.0384052i
\(737\) −5.89231 7.02218i −0.217046 0.258665i
\(738\) −23.5679 4.15566i −0.867547 0.152972i
\(739\) 2.86243 1.04184i 0.105296 0.0383246i −0.288835 0.957379i \(-0.593268\pi\)
0.394131 + 0.919054i \(0.371046\pi\)
\(740\) 0 0
\(741\) −0.376142 + 0.0258066i −0.0138179 + 0.000948028i
\(742\) 3.53033i 0.129602i
\(743\) −13.5975 37.3589i −0.498845 1.37057i −0.892392 0.451261i \(-0.850974\pi\)
0.393547 0.919305i \(-0.371248\pi\)
\(744\) −0.0219912 + 0.124718i −0.000806238 + 0.00457240i
\(745\) 0 0
\(746\) −28.9453 24.2880i −1.05976 0.889246i
\(747\) −18.4056 + 3.24540i −0.673426 + 0.118743i
\(748\) −14.3969 + 8.31204i −0.526402 + 0.303918i
\(749\) 12.2057 21.1409i 0.445986 0.772471i
\(750\) 0 0
\(751\) −33.6285 12.2398i −1.22712 0.446636i −0.354511 0.935052i \(-0.615353\pi\)
−0.872611 + 0.488416i \(0.837575\pi\)
\(752\) 10.8189 + 6.24632i 0.394526 + 0.227780i
\(753\) −0.396550 + 0.228948i −0.0144511 + 0.00834334i
\(754\) 1.37199 + 7.78093i 0.0499648 + 0.283365i
\(755\) 0 0
\(756\) −0.305177 + 0.256074i −0.0110992 + 0.00931333i
\(757\) 49.1480 + 8.66613i 1.78632 + 0.314976i 0.966310 0.257380i \(-0.0828591\pi\)
0.820006 + 0.572355i \(0.193970\pi\)
\(758\) −11.0357 30.3204i −0.400835 1.10128i
\(759\) 0.144460 0.00524355
\(760\) 0 0
\(761\) −36.2563 −1.31429 −0.657145 0.753764i \(-0.728236\pi\)
−0.657145 + 0.753764i \(0.728236\pi\)
\(762\) −0.160530 0.441052i −0.00581538 0.0159776i
\(763\) 2.61277 + 0.460702i 0.0945886 + 0.0166785i
\(764\) 15.7392 13.2067i 0.569423 0.477803i
\(765\) 0 0
\(766\) 3.78204 + 21.4490i 0.136651 + 0.774984i
\(767\) 9.85247 5.68833i 0.355752 0.205394i
\(768\) −0.0313015 0.0180720i −0.00112950 0.000652116i
\(769\) −5.18278 1.88638i −0.186896 0.0680246i 0.246877 0.969047i \(-0.420596\pi\)
−0.433773 + 0.901022i \(0.642818\pi\)
\(770\) 0 0
\(771\) 0.235745 0.408322i 0.00849014 0.0147054i
\(772\) 10.8374 6.25697i 0.390046 0.225193i
\(773\) 37.8158 6.66795i 1.36014 0.239830i 0.554475 0.832200i \(-0.312919\pi\)
0.805666 + 0.592371i \(0.201808\pi\)
\(774\) −13.1268 11.0147i −0.471833 0.395915i
\(775\) 0 0
\(776\) 2.37200 13.4523i 0.0851500 0.482910i
\(777\) −0.136486 0.374991i −0.00489639 0.0134527i
\(778\) 9.68485i 0.347219i
\(779\) −3.68159 + 34.5914i −0.131907 + 1.23937i
\(780\) 0 0
\(781\) 13.5157 4.91930i 0.483629 0.176026i
\(782\) 10.7622 + 1.89766i