Newspace parameters
Level: | \( N \) | \(=\) | \( 950 = 2 \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 950.u (of order \(18\), degree \(6\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.58578819202\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{18})\) |
Twist minimal: | no (minimal twist has level 190) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
99.1 | −0.342020 | + | 0.939693i | −2.25357 | + | 0.397366i | −0.766044 | − | 0.642788i | 0 | 0.397366 | − | 2.25357i | 2.39766 | + | 1.38429i | 0.866025 | − | 0.500000i | 2.10161 | − | 0.764925i | 0 | ||||
99.2 | −0.342020 | + | 0.939693i | 0.402740 | − | 0.0710139i | −0.766044 | − | 0.642788i | 0 | −0.0710139 | + | 0.402740i | −1.99244 | − | 1.15033i | 0.866025 | − | 0.500000i | −2.66192 | + | 0.968860i | 0 | ||||
99.3 | 0.342020 | − | 0.939693i | −0.402740 | + | 0.0710139i | −0.766044 | − | 0.642788i | 0 | −0.0710139 | + | 0.402740i | 1.99244 | + | 1.15033i | −0.866025 | + | 0.500000i | −2.66192 | + | 0.968860i | 0 | ||||
99.4 | 0.342020 | − | 0.939693i | 2.25357 | − | 0.397366i | −0.766044 | − | 0.642788i | 0 | 0.397366 | − | 2.25357i | −2.39766 | − | 1.38429i | −0.866025 | + | 0.500000i | 2.10161 | − | 0.764925i | 0 | ||||
149.1 | −0.642788 | + | 0.766044i | −0.936765 | − | 2.57374i | −0.173648 | − | 0.984808i | 0 | 2.57374 | + | 0.936765i | 3.33331 | − | 1.92448i | 0.866025 | + | 0.500000i | −3.44848 | + | 2.89362i | 0 | ||||
149.2 | −0.642788 | + | 0.766044i | 0.412760 | + | 1.13405i | −0.173648 | − | 0.984808i | 0 | −1.13405 | − | 0.412760i | −1.90202 | + | 1.09813i | 0.866025 | + | 0.500000i | 1.18244 | − | 0.992183i | 0 | ||||
149.3 | 0.642788 | − | 0.766044i | −0.412760 | − | 1.13405i | −0.173648 | − | 0.984808i | 0 | −1.13405 | − | 0.412760i | 1.90202 | − | 1.09813i | −0.866025 | − | 0.500000i | 1.18244 | − | 0.992183i | 0 | ||||
149.4 | 0.642788 | − | 0.766044i | 0.936765 | + | 2.57374i | −0.173648 | − | 0.984808i | 0 | 2.57374 | + | 0.936765i | −3.33331 | + | 1.92448i | −0.866025 | − | 0.500000i | −3.44848 | + | 2.89362i | 0 | ||||
199.1 | −0.984808 | + | 0.173648i | −1.68231 | − | 2.00490i | 0.939693 | − | 0.342020i | 0 | 2.00490 | + | 1.68231i | −0.840422 | − | 0.485218i | −0.866025 | + | 0.500000i | −0.668514 | + | 3.79133i | 0 | ||||
199.2 | −0.984808 | + | 0.173648i | 1.90555 | + | 2.27095i | 0.939693 | − | 0.342020i | 0 | −2.27095 | − | 1.90555i | −2.51922 | − | 1.45447i | −0.866025 | + | 0.500000i | −1.00513 | + | 5.70040i | 0 | ||||
199.3 | 0.984808 | − | 0.173648i | −1.90555 | − | 2.27095i | 0.939693 | − | 0.342020i | 0 | −2.27095 | − | 1.90555i | 2.51922 | + | 1.45447i | 0.866025 | − | 0.500000i | −1.00513 | + | 5.70040i | 0 | ||||
199.4 | 0.984808 | − | 0.173648i | 1.68231 | + | 2.00490i | 0.939693 | − | 0.342020i | 0 | 2.00490 | + | 1.68231i | 0.840422 | + | 0.485218i | 0.866025 | − | 0.500000i | −0.668514 | + | 3.79133i | 0 | ||||
499.1 | −0.342020 | − | 0.939693i | −2.25357 | − | 0.397366i | −0.766044 | + | 0.642788i | 0 | 0.397366 | + | 2.25357i | 2.39766 | − | 1.38429i | 0.866025 | + | 0.500000i | 2.10161 | + | 0.764925i | 0 | ||||
499.2 | −0.342020 | − | 0.939693i | 0.402740 | + | 0.0710139i | −0.766044 | + | 0.642788i | 0 | −0.0710139 | − | 0.402740i | −1.99244 | + | 1.15033i | 0.866025 | + | 0.500000i | −2.66192 | − | 0.968860i | 0 | ||||
499.3 | 0.342020 | + | 0.939693i | −0.402740 | − | 0.0710139i | −0.766044 | + | 0.642788i | 0 | −0.0710139 | − | 0.402740i | 1.99244 | − | 1.15033i | −0.866025 | − | 0.500000i | −2.66192 | − | 0.968860i | 0 | ||||
499.4 | 0.342020 | + | 0.939693i | 2.25357 | + | 0.397366i | −0.766044 | + | 0.642788i | 0 | 0.397366 | + | 2.25357i | −2.39766 | + | 1.38429i | −0.866025 | − | 0.500000i | 2.10161 | + | 0.764925i | 0 | ||||
549.1 | −0.984808 | − | 0.173648i | −1.68231 | + | 2.00490i | 0.939693 | + | 0.342020i | 0 | 2.00490 | − | 1.68231i | −0.840422 | + | 0.485218i | −0.866025 | − | 0.500000i | −0.668514 | − | 3.79133i | 0 | ||||
549.2 | −0.984808 | − | 0.173648i | 1.90555 | − | 2.27095i | 0.939693 | + | 0.342020i | 0 | −2.27095 | + | 1.90555i | −2.51922 | + | 1.45447i | −0.866025 | − | 0.500000i | −1.00513 | − | 5.70040i | 0 | ||||
549.3 | 0.984808 | + | 0.173648i | −1.90555 | + | 2.27095i | 0.939693 | + | 0.342020i | 0 | −2.27095 | + | 1.90555i | 2.51922 | − | 1.45447i | 0.866025 | + | 0.500000i | −1.00513 | − | 5.70040i | 0 | ||||
549.4 | 0.984808 | + | 0.173648i | 1.68231 | − | 2.00490i | 0.939693 | + | 0.342020i | 0 | 2.00490 | − | 1.68231i | 0.840422 | − | 0.485218i | 0.866025 | + | 0.500000i | −0.668514 | − | 3.79133i | 0 | ||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
19.e | even | 9 | 1 | inner |
95.p | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 950.2.u.f | 24 | |
5.b | even | 2 | 1 | inner | 950.2.u.f | 24 | |
5.c | odd | 4 | 1 | 190.2.k.c | ✓ | 12 | |
5.c | odd | 4 | 1 | 950.2.l.g | 12 | ||
19.e | even | 9 | 1 | inner | 950.2.u.f | 24 | |
95.p | even | 18 | 1 | inner | 950.2.u.f | 24 | |
95.q | odd | 36 | 1 | 190.2.k.c | ✓ | 12 | |
95.q | odd | 36 | 1 | 950.2.l.g | 12 | ||
95.q | odd | 36 | 1 | 3610.2.a.bf | 6 | ||
95.r | even | 36 | 1 | 3610.2.a.bd | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
190.2.k.c | ✓ | 12 | 5.c | odd | 4 | 1 | |
190.2.k.c | ✓ | 12 | 95.q | odd | 36 | 1 | |
950.2.l.g | 12 | 5.c | odd | 4 | 1 | ||
950.2.l.g | 12 | 95.q | odd | 36 | 1 | ||
950.2.u.f | 24 | 1.a | even | 1 | 1 | trivial | |
950.2.u.f | 24 | 5.b | even | 2 | 1 | inner | |
950.2.u.f | 24 | 19.e | even | 9 | 1 | inner | |
950.2.u.f | 24 | 95.p | even | 18 | 1 | inner | |
3610.2.a.bd | 6 | 95.r | even | 36 | 1 | ||
3610.2.a.bf | 6 | 95.q | odd | 36 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(950, [\chi])\):
\(T_{3}^{24} + \cdots\) |
\(T_{7}^{24} - \cdots\) |