Newspace parameters
Level: | \( N \) | \(=\) | \( 950 = 2 \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 950.q (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.58578819202\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
107.1 | −0.965926 | − | 0.258819i | −0.824123 | + | 3.07567i | 0.866025 | + | 0.500000i | 0 | 1.59208 | − | 2.75757i | −3.29328 | − | 3.29328i | −0.707107 | − | 0.707107i | −6.18248 | − | 3.56945i | 0 | ||||
107.2 | −0.965926 | − | 0.258819i | −0.313773 | + | 1.17102i | 0.866025 | + | 0.500000i | 0 | 0.606164 | − | 1.04991i | 1.88504 | + | 1.88504i | −0.707107 | − | 0.707107i | 1.32525 | + | 0.765131i | 0 | ||||
107.3 | −0.965926 | − | 0.258819i | 0.206366 | − | 0.770169i | 0.866025 | + | 0.500000i | 0 | −0.398669 | + | 0.690515i | −0.349095 | − | 0.349095i | −0.707107 | − | 0.707107i | 2.04750 | + | 1.18213i | 0 | ||||
107.4 | −0.965926 | − | 0.258819i | 0.672711 | − | 2.51059i | 0.866025 | + | 0.500000i | 0 | −1.29958 | + | 2.25093i | −0.692149 | − | 0.692149i | −0.707107 | − | 0.707107i | −3.25245 | − | 1.87780i | 0 | ||||
107.5 | 0.965926 | + | 0.258819i | −0.672711 | + | 2.51059i | 0.866025 | + | 0.500000i | 0 | −1.29958 | + | 2.25093i | 0.692149 | + | 0.692149i | 0.707107 | + | 0.707107i | −3.25245 | − | 1.87780i | 0 | ||||
107.6 | 0.965926 | + | 0.258819i | −0.206366 | + | 0.770169i | 0.866025 | + | 0.500000i | 0 | −0.398669 | + | 0.690515i | 0.349095 | + | 0.349095i | 0.707107 | + | 0.707107i | 2.04750 | + | 1.18213i | 0 | ||||
107.7 | 0.965926 | + | 0.258819i | 0.313773 | − | 1.17102i | 0.866025 | + | 0.500000i | 0 | 0.606164 | − | 1.04991i | −1.88504 | − | 1.88504i | 0.707107 | + | 0.707107i | 1.32525 | + | 0.765131i | 0 | ||||
107.8 | 0.965926 | + | 0.258819i | 0.824123 | − | 3.07567i | 0.866025 | + | 0.500000i | 0 | 1.59208 | − | 2.75757i | 3.29328 | + | 3.29328i | 0.707107 | + | 0.707107i | −6.18248 | − | 3.56945i | 0 | ||||
293.1 | −0.965926 | + | 0.258819i | −0.824123 | − | 3.07567i | 0.866025 | − | 0.500000i | 0 | 1.59208 | + | 2.75757i | −3.29328 | + | 3.29328i | −0.707107 | + | 0.707107i | −6.18248 | + | 3.56945i | 0 | ||||
293.2 | −0.965926 | + | 0.258819i | −0.313773 | − | 1.17102i | 0.866025 | − | 0.500000i | 0 | 0.606164 | + | 1.04991i | 1.88504 | − | 1.88504i | −0.707107 | + | 0.707107i | 1.32525 | − | 0.765131i | 0 | ||||
293.3 | −0.965926 | + | 0.258819i | 0.206366 | + | 0.770169i | 0.866025 | − | 0.500000i | 0 | −0.398669 | − | 0.690515i | −0.349095 | + | 0.349095i | −0.707107 | + | 0.707107i | 2.04750 | − | 1.18213i | 0 | ||||
293.4 | −0.965926 | + | 0.258819i | 0.672711 | + | 2.51059i | 0.866025 | − | 0.500000i | 0 | −1.29958 | − | 2.25093i | −0.692149 | + | 0.692149i | −0.707107 | + | 0.707107i | −3.25245 | + | 1.87780i | 0 | ||||
293.5 | 0.965926 | − | 0.258819i | −0.672711 | − | 2.51059i | 0.866025 | − | 0.500000i | 0 | −1.29958 | − | 2.25093i | 0.692149 | − | 0.692149i | 0.707107 | − | 0.707107i | −3.25245 | + | 1.87780i | 0 | ||||
293.6 | 0.965926 | − | 0.258819i | −0.206366 | − | 0.770169i | 0.866025 | − | 0.500000i | 0 | −0.398669 | − | 0.690515i | 0.349095 | − | 0.349095i | 0.707107 | − | 0.707107i | 2.04750 | − | 1.18213i | 0 | ||||
293.7 | 0.965926 | − | 0.258819i | 0.313773 | + | 1.17102i | 0.866025 | − | 0.500000i | 0 | 0.606164 | + | 1.04991i | −1.88504 | + | 1.88504i | 0.707107 | − | 0.707107i | 1.32525 | − | 0.765131i | 0 | ||||
293.8 | 0.965926 | − | 0.258819i | 0.824123 | + | 3.07567i | 0.866025 | − | 0.500000i | 0 | 1.59208 | + | 2.75757i | 3.29328 | − | 3.29328i | 0.707107 | − | 0.707107i | −6.18248 | + | 3.56945i | 0 | ||||
407.1 | −0.258819 | − | 0.965926i | −3.07567 | + | 0.824123i | −0.866025 | + | 0.500000i | 0 | 1.59208 | + | 2.75757i | −3.29328 | − | 3.29328i | 0.707107 | + | 0.707107i | 6.18248 | − | 3.56945i | 0 | ||||
407.2 | −0.258819 | − | 0.965926i | −1.17102 | + | 0.313773i | −0.866025 | + | 0.500000i | 0 | 0.606164 | + | 1.04991i | 1.88504 | + | 1.88504i | 0.707107 | + | 0.707107i | −1.32525 | + | 0.765131i | 0 | ||||
407.3 | −0.258819 | − | 0.965926i | 0.770169 | − | 0.206366i | −0.866025 | + | 0.500000i | 0 | −0.398669 | − | 0.690515i | −0.349095 | − | 0.349095i | 0.707107 | + | 0.707107i | −2.04750 | + | 1.18213i | 0 | ||||
407.4 | −0.258819 | − | 0.965926i | 2.51059 | − | 0.672711i | −0.866025 | + | 0.500000i | 0 | −1.29958 | − | 2.25093i | −0.692149 | − | 0.692149i | 0.707107 | + | 0.707107i | 3.25245 | − | 1.87780i | 0 | ||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
5.c | odd | 4 | 2 | inner |
19.d | odd | 6 | 1 | inner |
95.h | odd | 6 | 1 | inner |
95.l | even | 12 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 950.2.q.f | ✓ | 32 |
5.b | even | 2 | 1 | inner | 950.2.q.f | ✓ | 32 |
5.c | odd | 4 | 2 | inner | 950.2.q.f | ✓ | 32 |
19.d | odd | 6 | 1 | inner | 950.2.q.f | ✓ | 32 |
95.h | odd | 6 | 1 | inner | 950.2.q.f | ✓ | 32 |
95.l | even | 12 | 2 | inner | 950.2.q.f | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
950.2.q.f | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
950.2.q.f | ✓ | 32 | 5.b | even | 2 | 1 | inner |
950.2.q.f | ✓ | 32 | 5.c | odd | 4 | 2 | inner |
950.2.q.f | ✓ | 32 | 19.d | odd | 6 | 1 | inner |
950.2.q.f | ✓ | 32 | 95.h | odd | 6 | 1 | inner |
950.2.q.f | ✓ | 32 | 95.l | even | 12 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(950, [\chi])\):
\(T_{3}^{32} - \cdots\) |
\( T_{7}^{16} + 522 T_{7}^{12} + 24273 T_{7}^{8} + 23256 T_{7}^{4} + 1296 \) |