Properties

Label 950.2.q.c
Level $950$
Weight $2$
Character orbit 950.q
Analytic conductor $7.586$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 950.q (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.58578819202\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \(x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{24}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{24} q^{2} + \zeta_{24}^{7} q^{3} + \zeta_{24}^{2} q^{4} + ( 1 - \zeta_{24}^{4} ) q^{6} + ( -2 \zeta_{24} - 2 \zeta_{24}^{5} ) q^{7} -\zeta_{24}^{3} q^{8} + 2 \zeta_{24}^{2} q^{9} +O(q^{10})\) \( q -\zeta_{24} q^{2} + \zeta_{24}^{7} q^{3} + \zeta_{24}^{2} q^{4} + ( 1 - \zeta_{24}^{4} ) q^{6} + ( -2 \zeta_{24} - 2 \zeta_{24}^{5} ) q^{7} -\zeta_{24}^{3} q^{8} + 2 \zeta_{24}^{2} q^{9} + ( -\zeta_{24} + \zeta_{24}^{5} ) q^{12} + ( 2 \zeta_{24}^{3} - 2 \zeta_{24}^{7} ) q^{13} + ( 2 \zeta_{24}^{2} + 2 \zeta_{24}^{6} ) q^{14} + \zeta_{24}^{4} q^{16} + ( \zeta_{24} - 2 \zeta_{24}^{5} ) q^{17} -2 \zeta_{24}^{3} q^{18} + ( -3 \zeta_{24}^{2} + 5 \zeta_{24}^{6} ) q^{19} + ( 4 - 2 \zeta_{24}^{4} ) q^{21} + ( -2 \zeta_{24}^{3} - 2 \zeta_{24}^{7} ) q^{23} + ( \zeta_{24}^{2} - \zeta_{24}^{6} ) q^{24} -2 q^{26} + ( -5 \zeta_{24} + 5 \zeta_{24}^{5} ) q^{27} + ( -2 \zeta_{24}^{3} - 2 \zeta_{24}^{7} ) q^{28} + ( 2 \zeta_{24}^{2} - 4 \zeta_{24}^{6} ) q^{29} + ( 6 - 12 \zeta_{24}^{4} ) q^{31} -\zeta_{24}^{5} q^{32} + ( -\zeta_{24}^{2} + 2 \zeta_{24}^{6} ) q^{34} + 2 \zeta_{24}^{4} q^{36} + ( 4 \zeta_{24} - 4 \zeta_{24}^{5} ) q^{37} + ( 3 \zeta_{24}^{3} - 5 \zeta_{24}^{7} ) q^{38} + 2 \zeta_{24}^{6} q^{39} + ( 8 - 4 \zeta_{24}^{4} ) q^{41} + ( -4 \zeta_{24} + 2 \zeta_{24}^{5} ) q^{42} + ( -4 \zeta_{24}^{3} + 2 \zeta_{24}^{7} ) q^{43} + ( -2 + 4 \zeta_{24}^{4} ) q^{46} + ( 8 \zeta_{24} - 4 \zeta_{24}^{5} ) q^{47} + ( -\zeta_{24}^{3} + \zeta_{24}^{7} ) q^{48} + 5 \zeta_{24}^{6} q^{49} + ( 1 + \zeta_{24}^{4} ) q^{51} + 2 \zeta_{24} q^{52} + ( 5 \zeta_{24}^{2} - 5 \zeta_{24}^{6} ) q^{54} + ( -2 + 4 \zeta_{24}^{4} ) q^{56} + ( -2 \zeta_{24} - 3 \zeta_{24}^{5} ) q^{57} + ( -2 \zeta_{24}^{3} + 4 \zeta_{24}^{7} ) q^{58} + ( 3 \zeta_{24}^{2} + 3 \zeta_{24}^{6} ) q^{59} + ( 8 - 8 \zeta_{24}^{4} ) q^{61} + ( -6 \zeta_{24} + 12 \zeta_{24}^{5} ) q^{62} + ( -4 \zeta_{24}^{3} - 4 \zeta_{24}^{7} ) q^{63} + \zeta_{24}^{6} q^{64} + 8 \zeta_{24}^{5} q^{67} + ( \zeta_{24}^{3} - 2 \zeta_{24}^{7} ) q^{68} + ( 4 \zeta_{24}^{2} - 2 \zeta_{24}^{6} ) q^{69} + ( 16 - 8 \zeta_{24}^{4} ) q^{71} -2 \zeta_{24}^{5} q^{72} + ( 10 \zeta_{24}^{3} - 5 \zeta_{24}^{7} ) q^{73} + ( -4 \zeta_{24}^{2} + 4 \zeta_{24}^{6} ) q^{74} + ( -5 + 2 \zeta_{24}^{4} ) q^{76} -2 \zeta_{24}^{7} q^{78} + \zeta_{24}^{4} q^{81} + ( -8 \zeta_{24} + 4 \zeta_{24}^{5} ) q^{82} + ( -\zeta_{24}^{3} + 2 \zeta_{24}^{7} ) q^{83} + ( 4 \zeta_{24}^{2} - 2 \zeta_{24}^{6} ) q^{84} + ( 2 + 2 \zeta_{24}^{4} ) q^{86} + ( 2 \zeta_{24} + 2 \zeta_{24}^{5} ) q^{87} + ( 5 \zeta_{24}^{2} - 10 \zeta_{24}^{6} ) q^{89} + ( -4 - 4 \zeta_{24}^{4} ) q^{91} + ( 2 \zeta_{24} - 4 \zeta_{24}^{5} ) q^{92} + ( 12 \zeta_{24}^{3} - 6 \zeta_{24}^{7} ) q^{93} + ( -8 \zeta_{24}^{2} + 4 \zeta_{24}^{6} ) q^{94} + q^{96} + 7 \zeta_{24} q^{97} -5 \zeta_{24}^{7} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 4q^{6} + O(q^{10}) \) \( 8q + 4q^{6} + 4q^{16} + 24q^{21} - 16q^{26} + 8q^{36} + 48q^{41} + 12q^{51} + 32q^{61} + 96q^{71} - 32q^{76} + 4q^{81} + 24q^{86} - 48q^{91} + 8q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(\zeta_{24}^{6}\) \(1 - \zeta_{24}^{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
107.1
0.965926 + 0.258819i
−0.965926 0.258819i
0.965926 0.258819i
−0.965926 + 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
0.258819 0.965926i
−0.258819 + 0.965926i
−0.965926 0.258819i −0.258819 + 0.965926i 0.866025 + 0.500000i 0 0.500000 0.866025i −2.44949 2.44949i −0.707107 0.707107i 1.73205 + 1.00000i 0
107.2 0.965926 + 0.258819i 0.258819 0.965926i 0.866025 + 0.500000i 0 0.500000 0.866025i 2.44949 + 2.44949i 0.707107 + 0.707107i 1.73205 + 1.00000i 0
293.1 −0.965926 + 0.258819i −0.258819 0.965926i 0.866025 0.500000i 0 0.500000 + 0.866025i −2.44949 + 2.44949i −0.707107 + 0.707107i 1.73205 1.00000i 0
293.2 0.965926 0.258819i 0.258819 + 0.965926i 0.866025 0.500000i 0 0.500000 + 0.866025i 2.44949 2.44949i 0.707107 0.707107i 1.73205 1.00000i 0
407.1 −0.258819 0.965926i −0.965926 + 0.258819i −0.866025 + 0.500000i 0 0.500000 + 0.866025i −2.44949 2.44949i 0.707107 + 0.707107i −1.73205 + 1.00000i 0
407.2 0.258819 + 0.965926i 0.965926 0.258819i −0.866025 + 0.500000i 0 0.500000 + 0.866025i 2.44949 + 2.44949i −0.707107 0.707107i −1.73205 + 1.00000i 0
943.1 −0.258819 + 0.965926i −0.965926 0.258819i −0.866025 0.500000i 0 0.500000 0.866025i −2.44949 + 2.44949i 0.707107 0.707107i −1.73205 1.00000i 0
943.2 0.258819 0.965926i 0.965926 + 0.258819i −0.866025 0.500000i 0 0.500000 0.866025i 2.44949 2.44949i −0.707107 + 0.707107i −1.73205 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 943.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
5.c odd 4 2 inner
19.d odd 6 1 inner
95.h odd 6 1 inner
95.l even 12 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 950.2.q.c 8
5.b even 2 1 inner 950.2.q.c 8
5.c odd 4 2 inner 950.2.q.c 8
19.d odd 6 1 inner 950.2.q.c 8
95.h odd 6 1 inner 950.2.q.c 8
95.l even 12 2 inner 950.2.q.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
950.2.q.c 8 1.a even 1 1 trivial
950.2.q.c 8 5.b even 2 1 inner
950.2.q.c 8 5.c odd 4 2 inner
950.2.q.c 8 19.d odd 6 1 inner
950.2.q.c 8 95.h odd 6 1 inner
950.2.q.c 8 95.l even 12 2 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(950, [\chi])\):

\( T_{3}^{8} - T_{3}^{4} + 1 \)
\( T_{7}^{4} + 144 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{4} + T^{8} \)
$3$ \( 1 - T^{4} + T^{8} \)
$5$ \( T^{8} \)
$7$ \( ( 144 + T^{4} )^{2} \)
$11$ \( T^{8} \)
$13$ \( 256 - 16 T^{4} + T^{8} \)
$17$ \( 81 - 9 T^{4} + T^{8} \)
$19$ \( ( 361 + 11 T^{2} + T^{4} )^{2} \)
$23$ \( 20736 - 144 T^{4} + T^{8} \)
$29$ \( ( 144 + 12 T^{2} + T^{4} )^{2} \)
$31$ \( ( 108 + T^{2} )^{4} \)
$37$ \( ( 256 + T^{4} )^{2} \)
$41$ \( ( 48 - 12 T + T^{2} )^{4} \)
$43$ \( 20736 - 144 T^{4} + T^{8} \)
$47$ \( 5308416 - 2304 T^{4} + T^{8} \)
$53$ \( T^{8} \)
$59$ \( ( 729 + 27 T^{2} + T^{4} )^{2} \)
$61$ \( ( 64 - 8 T + T^{2} )^{4} \)
$67$ \( 16777216 - 4096 T^{4} + T^{8} \)
$71$ \( ( 192 - 24 T + T^{2} )^{4} \)
$73$ \( 31640625 - 5625 T^{4} + T^{8} \)
$79$ \( T^{8} \)
$83$ \( ( 9 + T^{4} )^{2} \)
$89$ \( ( 5625 + 75 T^{2} + T^{4} )^{2} \)
$97$ \( 5764801 - 2401 T^{4} + T^{8} \)
show more
show less