Defining parameters
Level: | \( N \) | \(=\) | \( 950 = 2 \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 950.q (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 95 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(300\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(950, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 648 | 120 | 528 |
Cusp forms | 552 | 120 | 432 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(950, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||
950.2.q.a | \(8\) | \(7.586\) | \(\Q(\zeta_{24})\) | None | \(0\) | \(-12\) | \(0\) | \(16\) | \(q-\zeta_{24}q^{2}+(-2+\zeta_{24}^{2}+\zeta_{24}^{4}+\zeta_{24}^{6}+\cdots)q^{3}+\cdots\) |
950.2.q.b | \(8\) | \(7.586\) | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{24}q^{2}+\zeta_{24}^{7}q^{3}+\zeta_{24}^{2}q^{4}+(-1+\cdots)q^{6}+\cdots\) |
950.2.q.c | \(8\) | \(7.586\) | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{24}q^{2}+\zeta_{24}^{7}q^{3}+\zeta_{24}^{2}q^{4}+(1+\cdots)q^{6}+\cdots\) |
950.2.q.d | \(8\) | \(7.586\) | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{24}q^{2}+2\zeta_{24}^{7}q^{3}+\zeta_{24}^{2}q^{4}+\cdots\) |
950.2.q.e | \(24\) | \(7.586\) | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
950.2.q.f | \(32\) | \(7.586\) | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
950.2.q.g | \(32\) | \(7.586\) | None | \(0\) | \(12\) | \(0\) | \(-24\) |
Decomposition of \(S_{2}^{\mathrm{old}}(950, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(950, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(190, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(475, [\chi])\)\(^{\oplus 2}\)