Newspace parameters
Level: | \( N \) | \(=\) | \( 950 = 2 \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 950.n (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.58578819202\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
39.1 | −0.587785 | − | 0.809017i | −3.22850 | − | 1.04900i | −0.309017 | + | 0.951057i | −1.55488 | − | 1.60697i | 1.04900 | + | 3.22850i | − | 3.46343i | 0.951057 | − | 0.309017i | 6.89577 | + | 5.01007i | −0.386131 | + | 2.20248i | |
39.2 | −0.587785 | − | 0.809017i | −3.16378 | − | 1.02797i | −0.309017 | + | 0.951057i | 1.22578 | − | 1.87015i | 1.02797 | + | 3.16378i | 4.52249i | 0.951057 | − | 0.309017i | 6.52572 | + | 4.74121i | −2.23348 | + | 0.107573i | ||
39.3 | −0.587785 | − | 0.809017i | −2.09906 | − | 0.682024i | −0.309017 | + | 0.951057i | −0.131723 | + | 2.23218i | 0.682024 | + | 2.09906i | 4.35569i | 0.951057 | − | 0.309017i | 1.51382 | + | 1.09986i | 1.88330 | − | 1.20548i | ||
39.4 | −0.587785 | − | 0.809017i | −2.06198 | − | 0.669976i | −0.309017 | + | 0.951057i | 2.16827 | + | 0.546445i | 0.669976 | + | 2.06198i | 0.754312i | 0.951057 | − | 0.309017i | 1.37582 | + | 0.999595i | −0.832394 | − | 2.07536i | ||
39.5 | −0.587785 | − | 0.809017i | −1.16860 | − | 0.379700i | −0.309017 | + | 0.951057i | −2.18761 | − | 0.463006i | 0.379700 | + | 1.16860i | − | 0.0227859i | 0.951057 | − | 0.309017i | −1.20561 | − | 0.875924i | 0.911264 | + | 2.04196i | |
39.6 | −0.587785 | − | 0.809017i | −0.408708 | − | 0.132797i | −0.309017 | + | 0.951057i | 1.37111 | − | 1.76637i | 0.132797 | + | 0.408708i | − | 1.90044i | 0.951057 | − | 0.309017i | −2.27764 | − | 1.65481i | −2.23494 | − | 0.0710083i | |
39.7 | −0.587785 | − | 0.809017i | 0.0436702 | + | 0.0141893i | −0.309017 | + | 0.951057i | 0.459049 | + | 2.18844i | −0.0141893 | − | 0.0436702i | − | 2.50954i | 0.951057 | − | 0.309017i | −2.42535 | − | 1.76212i | 1.50066 | − | 1.65771i | |
39.8 | −0.587785 | − | 0.809017i | 0.702911 | + | 0.228390i | −0.309017 | + | 0.951057i | −0.520909 | − | 2.17455i | −0.228390 | − | 0.702911i | 2.52633i | 0.951057 | − | 0.309017i | −1.98513 | − | 1.44228i | −1.45306 | + | 1.69959i | ||
39.9 | −0.587785 | − | 0.809017i | 1.21854 | + | 0.395928i | −0.309017 | + | 0.951057i | 1.81457 | + | 1.30665i | −0.395928 | − | 1.21854i | − | 1.92349i | 0.951057 | − | 0.309017i | −1.09897 | − | 0.798446i | −0.00947820 | − | 2.23605i | |
39.10 | −0.587785 | − | 0.809017i | 1.40124 | + | 0.455290i | −0.309017 | + | 0.951057i | −1.43867 | + | 1.71179i | −0.455290 | − | 1.40124i | 2.83916i | 0.951057 | − | 0.309017i | −0.670872 | − | 0.487417i | 2.23050 | + | 0.157745i | ||
39.11 | −0.587785 | − | 0.809017i | 1.83314 | + | 0.595623i | −0.309017 | + | 0.951057i | 2.21079 | − | 0.335262i | −0.595623 | − | 1.83314i | 3.44879i | 0.951057 | − | 0.309017i | 0.578586 | + | 0.420367i | −1.57070 | − | 1.59151i | ||
39.12 | −0.587785 | − | 0.809017i | 2.95991 | + | 0.961734i | −0.309017 | + | 0.951057i | −2.05251 | − | 0.887239i | −0.961734 | − | 2.95991i | 0.626185i | 0.951057 | − | 0.309017i | 5.40910 | + | 3.92994i | 0.488645 | + | 2.18202i | ||
39.13 | 0.587785 | + | 0.809017i | −3.02842 | − | 0.983992i | −0.309017 | + | 0.951057i | 1.06990 | + | 1.96349i | −0.983992 | − | 3.02842i | − | 2.61307i | −0.951057 | + | 0.309017i | 5.77601 | + | 4.19652i | −0.959627 | + | 2.01968i | |
39.14 | 0.587785 | + | 0.809017i | −2.52973 | − | 0.821960i | −0.309017 | + | 0.951057i | 1.13666 | − | 1.92562i | −0.821960 | − | 2.52973i | 1.29013i | −0.951057 | + | 0.309017i | 3.29688 | + | 2.39532i | 2.22597 | − | 0.212273i | ||
39.15 | 0.587785 | + | 0.809017i | −2.08312 | − | 0.676848i | −0.309017 | + | 0.951057i | −1.46374 | − | 1.69040i | −0.676848 | − | 2.08312i | 1.17098i | −0.951057 | + | 0.309017i | 1.45423 | + | 1.05656i | 0.507200 | − | 2.17779i | ||
39.16 | 0.587785 | + | 0.809017i | −1.43673 | − | 0.466821i | −0.309017 | + | 0.951057i | −1.88711 | + | 1.19951i | −0.466821 | − | 1.43673i | 3.41486i | −0.951057 | + | 0.309017i | −0.580791 | − | 0.421969i | −2.07964 | − | 0.821650i | ||
39.17 | 0.587785 | + | 0.809017i | −0.0948098 | − | 0.0308056i | −0.309017 | + | 0.951057i | 1.43256 | − | 1.71691i | −0.0308056 | − | 0.0948098i | − | 2.23805i | −0.951057 | + | 0.309017i | −2.41901 | − | 1.75751i | 2.23105 | + | 0.149792i | |
39.18 | 0.587785 | + | 0.809017i | −0.0145515 | − | 0.00472808i | −0.309017 | + | 0.951057i | 1.99515 | + | 1.00964i | −0.00472808 | − | 0.0145515i | 0.890552i | −0.951057 | + | 0.309017i | −2.42686 | − | 1.76322i | 0.355906 | + | 2.20756i | ||
39.19 | 0.587785 | + | 0.809017i | 0.219108 | + | 0.0711926i | −0.309017 | + | 0.951057i | −0.684773 | + | 2.12863i | 0.0711926 | + | 0.219108i | − | 4.22635i | −0.951057 | + | 0.309017i | −2.38411 | − | 1.73216i | −2.12460 | + | 0.697187i | |
39.20 | 0.587785 | + | 0.809017i | 1.16397 | + | 0.378196i | −0.309017 | + | 0.951057i | −2.21303 | + | 0.320187i | 0.378196 | + | 1.16397i | − | 3.41155i | −0.951057 | + | 0.309017i | −1.21526 | − | 0.882938i | −1.55982 | − | 1.60217i | |
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 950.2.n.b | ✓ | 96 |
25.e | even | 10 | 1 | inner | 950.2.n.b | ✓ | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
950.2.n.b | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
950.2.n.b | ✓ | 96 | 25.e | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(11\!\cdots\!97\)\( T_{3}^{76} - \)\(43\!\cdots\!20\)\( T_{3}^{75} - \)\(85\!\cdots\!51\)\( T_{3}^{74} + \)\(37\!\cdots\!80\)\( T_{3}^{73} + \)\(56\!\cdots\!23\)\( T_{3}^{72} - \)\(29\!\cdots\!30\)\( T_{3}^{71} - \)\(32\!\cdots\!09\)\( T_{3}^{70} + \)\(21\!\cdots\!70\)\( T_{3}^{69} + \)\(15\!\cdots\!53\)\( T_{3}^{68} - \)\(14\!\cdots\!70\)\( T_{3}^{67} - \)\(58\!\cdots\!97\)\( T_{3}^{66} + \)\(85\!\cdots\!20\)\( T_{3}^{65} + \)\(11\!\cdots\!98\)\( T_{3}^{64} - \)\(47\!\cdots\!50\)\( T_{3}^{63} + \)\(61\!\cdots\!28\)\( T_{3}^{62} + \)\(24\!\cdots\!20\)\( T_{3}^{61} - \)\(91\!\cdots\!27\)\( T_{3}^{60} - \)\(11\!\cdots\!70\)\( T_{3}^{59} + \)\(70\!\cdots\!28\)\( T_{3}^{58} + \)\(48\!\cdots\!60\)\( T_{3}^{57} - \)\(42\!\cdots\!70\)\( T_{3}^{56} - \)\(18\!\cdots\!10\)\( T_{3}^{55} + \)\(21\!\cdots\!32\)\( T_{3}^{54} + \)\(67\!\cdots\!00\)\( T_{3}^{53} - \)\(95\!\cdots\!19\)\( T_{3}^{52} - \)\(21\!\cdots\!90\)\( T_{3}^{51} + \)\(37\!\cdots\!69\)\( T_{3}^{50} + \)\(59\!\cdots\!70\)\( T_{3}^{49} - \)\(13\!\cdots\!54\)\( T_{3}^{48} - \)\(14\!\cdots\!10\)\( T_{3}^{47} + \)\(41\!\cdots\!49\)\( T_{3}^{46} + \)\(29\!\cdots\!70\)\( T_{3}^{45} - \)\(11\!\cdots\!53\)\( T_{3}^{44} - \)\(41\!\cdots\!90\)\( T_{3}^{43} + \)\(28\!\cdots\!48\)\( T_{3}^{42} + \)\(16\!\cdots\!60\)\( T_{3}^{41} - \)\(60\!\cdots\!70\)\( T_{3}^{40} + \)\(11\!\cdots\!80\)\( T_{3}^{39} + \)\(11\!\cdots\!83\)\( T_{3}^{38} - \)\(50\!\cdots\!30\)\( T_{3}^{37} - \)\(18\!\cdots\!20\)\( T_{3}^{36} + \)\(13\!\cdots\!50\)\( T_{3}^{35} + \)\(23\!\cdots\!22\)\( T_{3}^{34} - \)\(25\!\cdots\!50\)\( T_{3}^{33} - \)\(22\!\cdots\!49\)\( T_{3}^{32} + \)\(35\!\cdots\!90\)\( T_{3}^{31} + \)\(18\!\cdots\!99\)\( T_{3}^{30} - \)\(45\!\cdots\!90\)\( T_{3}^{29} - \)\(33\!\cdots\!74\)\( T_{3}^{28} + \)\(43\!\cdots\!50\)\( T_{3}^{27} - \)\(16\!\cdots\!80\)\( T_{3}^{26} - \)\(23\!\cdots\!40\)\( T_{3}^{25} + \)\(22\!\cdots\!49\)\( T_{3}^{24} - \)\(32\!\cdots\!50\)\( T_{3}^{23} - \)\(12\!\cdots\!78\)\( T_{3}^{22} - \)\(22\!\cdots\!40\)\( T_{3}^{21} + \)\(21\!\cdots\!48\)\( T_{3}^{20} - \)\(20\!\cdots\!40\)\( T_{3}^{19} - \)\(42\!\cdots\!68\)\( T_{3}^{18} + \)\(14\!\cdots\!60\)\( T_{3}^{17} + \)\(36\!\cdots\!20\)\( T_{3}^{16} - \)\(25\!\cdots\!40\)\( T_{3}^{15} + \)\(44\!\cdots\!48\)\( T_{3}^{14} - \)\(48\!\cdots\!40\)\( T_{3}^{13} + \)\(49\!\cdots\!64\)\( T_{3}^{12} - \)\(21\!\cdots\!40\)\( T_{3}^{11} + \)\(30\!\cdots\!56\)\( T_{3}^{10} + \)\(45\!\cdots\!20\)\( T_{3}^{9} - \)\(53\!\cdots\!36\)\( T_{3}^{8} + \)\(40\!\cdots\!40\)\( T_{3}^{7} + \)\(49\!\cdots\!88\)\( T_{3}^{6} - \)\(32\!\cdots\!20\)\( T_{3}^{5} - 215404622848 T_{3}^{4} + 22720706560 T_{3}^{3} + 380170240 T_{3}^{2} + 1597440 T_{3} + 4096 \)">\(T_{3}^{96} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(950, [\chi])\).