Newspace parameters
Level: | \( N \) | \(=\) | \( 950 = 2 \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 950.n (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.58578819202\) |
Analytic rank: | \(0\) |
Dimension: | \(88\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
39.1 | −0.587785 | − | 0.809017i | −2.56558 | − | 0.833609i | −0.309017 | + | 0.951057i | 0.0605232 | + | 2.23525i | 0.833609 | + | 2.56558i | − | 3.84106i | 0.951057 | − | 0.309017i | 3.46027 | + | 2.51403i | 1.77278 | − | 1.36281i | |
39.2 | −0.587785 | − | 0.809017i | −2.20724 | − | 0.717177i | −0.309017 | + | 0.951057i | 2.23210 | − | 0.133199i | 0.717177 | + | 2.20724i | − | 2.34643i | 0.951057 | − | 0.309017i | 1.93053 | + | 1.40261i | −1.41975 | − | 1.72751i | |
39.3 | −0.587785 | − | 0.809017i | −2.20015 | − | 0.714873i | −0.309017 | + | 0.951057i | −2.17200 | − | 0.531443i | 0.714873 | + | 2.20015i | 2.86995i | 0.951057 | − | 0.309017i | 1.90257 | + | 1.38230i | 0.846721 | + | 2.06956i | ||
39.4 | −0.587785 | − | 0.809017i | −1.06179 | − | 0.344997i | −0.309017 | + | 0.951057i | −0.518181 | − | 2.17520i | 0.344997 | + | 1.06179i | 0.133310i | 0.951057 | − | 0.309017i | −1.41867 | − | 1.03073i | −1.45519 | + | 1.69777i | ||
39.5 | −0.587785 | − | 0.809017i | −0.812784 | − | 0.264090i | −0.309017 | + | 0.951057i | 0.775807 | + | 2.09717i | 0.264090 | + | 0.812784i | 3.74573i | 0.951057 | − | 0.309017i | −1.83618 | − | 1.33406i | 1.24064 | − | 1.86033i | ||
39.6 | −0.587785 | − | 0.809017i | −0.273661 | − | 0.0889179i | −0.309017 | + | 0.951057i | −1.60391 | + | 1.55803i | 0.0889179 | + | 0.273661i | − | 0.224849i | 0.951057 | − | 0.309017i | −2.36007 | − | 1.71469i | 2.20323 | + | 0.381801i | |
39.7 | −0.587785 | − | 0.809017i | 0.236785 | + | 0.0769362i | −0.309017 | + | 0.951057i | −1.89595 | − | 1.18549i | −0.0769362 | − | 0.236785i | − | 4.79883i | 0.951057 | − | 0.309017i | −2.37690 | − | 1.72692i | 0.155332 | + | 2.23067i | |
39.8 | −0.587785 | − | 0.809017i | 1.25142 | + | 0.406611i | −0.309017 | + | 0.951057i | 1.47560 | − | 1.68006i | −0.406611 | − | 1.25142i | 2.56926i | 0.951057 | − | 0.309017i | −1.02633 | − | 0.745671i | −2.22653 | − | 0.206269i | ||
39.9 | −0.587785 | − | 0.809017i | 1.63623 | + | 0.531642i | −0.309017 | + | 0.951057i | 1.99525 | − | 1.00944i | −0.531642 | − | 1.63623i | − | 3.69408i | 0.951057 | − | 0.309017i | −0.0324603 | − | 0.0235838i | −1.98943 | − | 1.02086i | |
39.10 | −0.587785 | − | 0.809017i | 2.87975 | + | 0.935689i | −0.309017 | + | 0.951057i | 0.587147 | + | 2.15760i | −0.935689 | − | 2.87975i | 1.61619i | 0.951057 | − | 0.309017i | 4.99042 | + | 3.62575i | 1.40042 | − | 1.74322i | ||
39.11 | −0.587785 | − | 0.809017i | 2.95005 | + | 0.958531i | −0.309017 | + | 0.951057i | 1.23590 | − | 1.86348i | −0.958531 | − | 2.95005i | − | 2.65378i | 0.951057 | − | 0.309017i | 5.35699 | + | 3.89208i | −2.23403 | + | 0.0954627i | |
39.12 | 0.587785 | + | 0.809017i | −3.09795 | − | 1.00658i | −0.309017 | + | 0.951057i | −0.367092 | + | 2.20573i | −1.00658 | − | 3.09795i | 4.43412i | −0.951057 | + | 0.309017i | 6.15701 | + | 4.47333i | −2.00024 | + | 0.999512i | ||
39.13 | 0.587785 | + | 0.809017i | −1.88808 | − | 0.613474i | −0.309017 | + | 0.951057i | 2.21981 | + | 0.269141i | −0.613474 | − | 1.88808i | 0.715850i | −0.951057 | + | 0.309017i | 0.761435 | + | 0.553215i | 1.08703 | + | 1.95406i | ||
39.14 | 0.587785 | + | 0.809017i | −1.78167 | − | 0.578899i | −0.309017 | + | 0.951057i | 0.452104 | − | 2.18989i | −0.578899 | − | 1.78167i | − | 4.62971i | −0.951057 | + | 0.309017i | 0.412164 | + | 0.299454i | 2.03740 | − | 0.921423i | |
39.15 | 0.587785 | + | 0.809017i | −1.70705 | − | 0.554656i | −0.309017 | + | 0.951057i | −2.20234 | + | 0.386932i | −0.554656 | − | 1.70705i | − | 2.40506i | −0.951057 | + | 0.309017i | 0.179341 | + | 0.130299i | −1.60753 | − | 1.55429i | |
39.16 | 0.587785 | + | 0.809017i | −1.33501 | − | 0.433772i | −0.309017 | + | 0.951057i | 0.407477 | + | 2.19863i | −0.433772 | − | 1.33501i | − | 1.42943i | −0.951057 | + | 0.309017i | −0.832948 | − | 0.605172i | −1.53922 | + | 1.62198i | |
39.17 | 0.587785 | + | 0.809017i | −0.284260 | − | 0.0923618i | −0.309017 | + | 0.951057i | 0.810167 | − | 2.08414i | −0.0923618 | − | 0.284260i | 5.14607i | −0.951057 | + | 0.309017i | −2.35478 | − | 1.71085i | 2.16231 | − | 0.569586i | ||
39.18 | 0.587785 | + | 0.809017i | 0.285827 | + | 0.0928709i | −0.309017 | + | 0.951057i | 2.23251 | − | 0.126065i | 0.0928709 | + | 0.285827i | − | 0.304227i | −0.951057 | + | 0.309017i | −2.35398 | − | 1.71027i | 1.41423 | + | 1.73204i | |
39.19 | 0.587785 | + | 0.809017i | 0.718550 | + | 0.233471i | −0.309017 | + | 0.951057i | −1.61612 | − | 1.54537i | 0.233471 | + | 0.718550i | − | 0.567373i | −0.951057 | + | 0.309017i | −1.96525 | − | 1.42783i | 0.300299 | − | 2.21581i | |
39.20 | 0.587785 | + | 0.809017i | 1.55730 | + | 0.505997i | −0.309017 | + | 0.951057i | −0.854432 | + | 2.06638i | 0.505997 | + | 1.55730i | 0.994490i | −0.951057 | + | 0.309017i | −0.257907 | − | 0.187380i | −2.17396 | + | 0.523340i | ||
See all 88 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 950.2.n.a | ✓ | 88 |
25.e | even | 10 | 1 | inner | 950.2.n.a | ✓ | 88 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
950.2.n.a | ✓ | 88 | 1.a | even | 1 | 1 | trivial |
950.2.n.a | ✓ | 88 | 25.e | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(20\!\cdots\!11\)\( T_{3}^{66} + \)\(37\!\cdots\!40\)\( T_{3}^{65} + \)\(13\!\cdots\!67\)\( T_{3}^{64} - \)\(22\!\cdots\!10\)\( T_{3}^{63} - \)\(80\!\cdots\!37\)\( T_{3}^{62} + \)\(12\!\cdots\!10\)\( T_{3}^{61} + \)\(44\!\cdots\!81\)\( T_{3}^{60} - \)\(58\!\cdots\!70\)\( T_{3}^{59} - \)\(22\!\cdots\!01\)\( T_{3}^{58} + \)\(25\!\cdots\!20\)\( T_{3}^{57} + \)\(10\!\cdots\!42\)\( T_{3}^{56} - \)\(94\!\cdots\!50\)\( T_{3}^{55} - \)\(46\!\cdots\!84\)\( T_{3}^{54} + \)\(30\!\cdots\!40\)\( T_{3}^{53} + \)\(18\!\cdots\!89\)\( T_{3}^{52} - \)\(73\!\cdots\!70\)\( T_{3}^{51} - \)\(66\!\cdots\!64\)\( T_{3}^{50} + \)\(11\!\cdots\!20\)\( T_{3}^{49} + \)\(21\!\cdots\!42\)\( T_{3}^{48} + \)\(16\!\cdots\!50\)\( T_{3}^{47} - \)\(63\!\cdots\!64\)\( T_{3}^{46} - \)\(21\!\cdots\!00\)\( T_{3}^{45} + \)\(16\!\cdots\!97\)\( T_{3}^{44} + \)\(10\!\cdots\!30\)\( T_{3}^{43} - \)\(35\!\cdots\!59\)\( T_{3}^{42} - \)\(32\!\cdots\!50\)\( T_{3}^{41} + \)\(68\!\cdots\!82\)\( T_{3}^{40} + \)\(85\!\cdots\!30\)\( T_{3}^{39} - \)\(11\!\cdots\!99\)\( T_{3}^{38} - \)\(19\!\cdots\!30\)\( T_{3}^{37} + \)\(13\!\cdots\!59\)\( T_{3}^{36} + \)\(36\!\cdots\!50\)\( T_{3}^{35} - \)\(94\!\cdots\!84\)\( T_{3}^{34} - \)\(53\!\cdots\!00\)\( T_{3}^{33} + \)\(38\!\cdots\!42\)\( T_{3}^{32} + \)\(74\!\cdots\!80\)\( T_{3}^{31} + \)\(13\!\cdots\!39\)\( T_{3}^{30} - \)\(88\!\cdots\!50\)\( T_{3}^{29} - \)\(38\!\cdots\!84\)\( T_{3}^{28} + \)\(87\!\cdots\!10\)\( T_{3}^{27} + \)\(63\!\cdots\!58\)\( T_{3}^{26} - \)\(56\!\cdots\!30\)\( T_{3}^{25} - \)\(47\!\cdots\!33\)\( T_{3}^{24} + \)\(67\!\cdots\!30\)\( T_{3}^{23} + \)\(80\!\cdots\!99\)\( T_{3}^{22} - \)\(10\!\cdots\!90\)\( T_{3}^{21} - \)\(43\!\cdots\!18\)\( T_{3}^{20} + \)\(72\!\cdots\!90\)\( T_{3}^{19} + \)\(31\!\cdots\!16\)\( T_{3}^{18} + \)\(17\!\cdots\!20\)\( T_{3}^{17} - \)\(18\!\cdots\!19\)\( T_{3}^{16} - \)\(60\!\cdots\!70\)\( T_{3}^{15} + \)\(75\!\cdots\!54\)\( T_{3}^{14} + \)\(63\!\cdots\!60\)\( T_{3}^{13} + \)\(75\!\cdots\!68\)\( T_{3}^{12} - \)\(90\!\cdots\!40\)\( T_{3}^{11} - \)\(23\!\cdots\!72\)\( T_{3}^{10} + \)\(10\!\cdots\!60\)\( T_{3}^{9} + \)\(36\!\cdots\!68\)\( T_{3}^{8} - \)\(13\!\cdots\!20\)\( T_{3}^{7} - \)\(52\!\cdots\!68\)\( T_{3}^{6} + \)\(14\!\cdots\!60\)\( T_{3}^{5} + \)\(59\!\cdots\!12\)\( T_{3}^{4} - \)\(81\!\cdots\!20\)\( T_{3}^{3} - \)\(35\!\cdots\!00\)\( T_{3}^{2} + \)\(20\!\cdots\!80\)\( T_{3} + \)\(94\!\cdots\!16\)\( \)">\(T_{3}^{88} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(950, [\chi])\).