Properties

Label 950.2.l.f
Level $950$
Weight $2$
Character orbit 950.l
Analytic conductor $7.586$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 950.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.58578819202\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\zeta_{18} + \zeta_{18}^{4} ) q^{2} + ( 1 + \zeta_{18}^{2} ) q^{3} -\zeta_{18}^{5} q^{4} + ( -1 - \zeta_{18} + \zeta_{18}^{4} ) q^{6} + ( \zeta_{18} - \zeta_{18}^{2} ) q^{7} + \zeta_{18}^{3} q^{8} + ( 1 - \zeta_{18}^{2} + \zeta_{18}^{4} ) q^{9} +O(q^{10})\) \( q + ( -\zeta_{18} + \zeta_{18}^{4} ) q^{2} + ( 1 + \zeta_{18}^{2} ) q^{3} -\zeta_{18}^{5} q^{4} + ( -1 - \zeta_{18} + \zeta_{18}^{4} ) q^{6} + ( \zeta_{18} - \zeta_{18}^{2} ) q^{7} + \zeta_{18}^{3} q^{8} + ( 1 - \zeta_{18}^{2} + \zeta_{18}^{4} ) q^{9} + ( 2 \zeta_{18} + \zeta_{18}^{2} + \zeta_{18}^{3} + \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{11} + ( \zeta_{18} - \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{12} + ( 3 + 3 \zeta_{18} - 2 \zeta_{18}^{2} - \zeta_{18}^{3} - 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{13} + ( 1 - \zeta_{18}^{2} + \zeta_{18}^{5} ) q^{14} -\zeta_{18} q^{16} + ( 1 + 4 \zeta_{18} - 4 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{17} + ( 1 - \zeta_{18} - \zeta_{18}^{2} + \zeta_{18}^{4} ) q^{18} + ( 2 - 4 \zeta_{18} - 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{19} + ( \zeta_{18} - \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{21} + ( -1 - \zeta_{18} - 3 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{5} ) q^{22} + ( 2 - 3 \zeta_{18} + \zeta_{18}^{3} + \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{23} + ( \zeta_{18}^{3} + \zeta_{18}^{5} ) q^{24} + ( 2 - 2 \zeta_{18} - \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 3 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{26} + ( -3 \zeta_{18}^{2} + \zeta_{18}^{3} - 3 \zeta_{18}^{4} ) q^{27} + ( 1 - \zeta_{18} - \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{28} + ( 4 + \zeta_{18}^{2} + 4 \zeta_{18}^{4} ) q^{29} + ( -2 - 3 \zeta_{18} + 3 \zeta_{18}^{2} + 2 \zeta_{18}^{3} ) q^{31} + ( \zeta_{18}^{2} - \zeta_{18}^{5} ) q^{32} + ( -1 + \zeta_{18}^{2} + 4 \zeta_{18}^{3} + 4 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{33} + ( -\zeta_{18} + \zeta_{18}^{3} + \zeta_{18}^{4} + 4 \zeta_{18}^{5} ) q^{34} + ( 1 - \zeta_{18} + \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{36} + ( -5 + 4 \zeta_{18} + 4 \zeta_{18}^{2} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{37} + ( 2 + 2 \zeta_{18}^{2} - \zeta_{18}^{3} + 2 \zeta_{18}^{4} - 4 \zeta_{18}^{5} ) q^{38} + ( 5 + \zeta_{18} + \zeta_{18}^{2} - 2 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{39} + ( 2 + 4 \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{41} + ( 1 - \zeta_{18} + \zeta_{18}^{5} ) q^{42} + ( -1 + \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{43} + ( 3 + 3 \zeta_{18} + \zeta_{18}^{2} - 2 \zeta_{18}^{3} - \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{44} + ( -3 \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{46} + ( -1 + \zeta_{18} - 5 \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{47} + ( -\zeta_{18} - \zeta_{18}^{3} ) q^{48} + ( \zeta_{18}^{2} + 5 \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{49} + ( 5 + 5 \zeta_{18} + \zeta_{18}^{2} - 5 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{51} + ( 1 - \zeta_{18}^{2} - 3 \zeta_{18}^{3} + 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{52} + ( 3 - \zeta_{18} - 2 \zeta_{18}^{3} - 2 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{53} + ( 3 - \zeta_{18} + 3 \zeta_{18}^{2} ) q^{54} + ( \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{56} + ( -5 \zeta_{18} - 4 \zeta_{18}^{3} + \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{57} + ( -1 - 4 \zeta_{18} - 4 \zeta_{18}^{2} + 4 \zeta_{18}^{4} ) q^{58} + ( 3 - 7 \zeta_{18} - \zeta_{18}^{2} + \zeta_{18}^{3} + 7 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{59} + ( -5 + 2 \zeta_{18} + 3 \zeta_{18}^{3} + 3 \zeta_{18}^{4} + 6 \zeta_{18}^{5} ) q^{61} + ( -3 + 3 \zeta_{18}^{2} - 2 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{62} + ( 1 + \zeta_{18} - \zeta_{18}^{2} - 2 \zeta_{18}^{3} + \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{63} + ( -1 + \zeta_{18}^{3} ) q^{64} + ( -1 - 3 \zeta_{18} - 4 \zeta_{18}^{2} - 3 \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{66} + ( -3 + 3 \zeta_{18} + 4 \zeta_{18}^{2} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{4} ) q^{67} + ( -\zeta_{18} - 4 \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{68} + ( 1 - 5 \zeta_{18} + 2 \zeta_{18}^{2} - \zeta_{18}^{3} + 3 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{69} + ( 6 - 6 \zeta_{18}^{2} - 7 \zeta_{18}^{3} - 2 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{71} + ( -\zeta_{18} + \zeta_{18}^{3} + \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{72} + ( -5 + 7 \zeta_{18} - 2 \zeta_{18}^{2} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{5} ) q^{73} + ( -4 + 5 \zeta_{18} - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 5 \zeta_{18}^{4} + 4 \zeta_{18}^{5} ) q^{74} + ( -2 - \zeta_{18} - 2 \zeta_{18}^{2} + 4 \zeta_{18}^{3} + 2 \zeta_{18}^{4} ) q^{76} + ( -1 + 2 \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{4} ) q^{77} + ( -1 - 5 \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{3} + 5 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{78} + \zeta_{18} q^{79} + ( 6 - 6 \zeta_{18}^{2} - 5 \zeta_{18}^{3} - 3 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{81} + ( -4 - 4 \zeta_{18} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} ) q^{82} + ( 1 + 2 \zeta_{18} + 3 \zeta_{18}^{2} - \zeta_{18}^{3} - 5 \zeta_{18}^{4} - 5 \zeta_{18}^{5} ) q^{83} + ( -\zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{3} + \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{84} + ( -1 + \zeta_{18}^{2} - \zeta_{18}^{4} ) q^{86} + ( 5 \zeta_{18}^{2} + 4 \zeta_{18}^{3} + 5 \zeta_{18}^{4} ) q^{87} + ( -1 - \zeta_{18} - 2 \zeta_{18}^{2} + \zeta_{18}^{3} + 3 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{88} + ( -3 - 3 \zeta_{18} - 5 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 5 \zeta_{18}^{4} + 5 \zeta_{18}^{5} ) q^{89} + ( -4 + 5 \zeta_{18} - \zeta_{18}^{3} - \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{91} + ( -2 + 2 \zeta_{18} + \zeta_{18}^{2} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{5} ) q^{92} + ( -2 - 3 \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{3} + 3 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{93} + ( 5 - \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{94} + ( \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{5} ) q^{96} + ( 3 - 2 \zeta_{18} + 9 \zeta_{18}^{2} - 9 \zeta_{18}^{3} + 2 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{97} + ( -1 - 5 \zeta_{18} - \zeta_{18}^{2} ) q^{98} + ( -2 + 3 \zeta_{18} - \zeta_{18}^{3} - \zeta_{18}^{4} + 4 \zeta_{18}^{5} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + 6q^{3} - 6q^{6} + 3q^{8} + 6q^{9} + O(q^{10}) \) \( 6q + 6q^{3} - 6q^{6} + 3q^{8} + 6q^{9} + 3q^{11} + 15q^{13} + 6q^{14} + 6q^{17} + 6q^{18} + 6q^{19} + 3q^{21} - 12q^{22} + 15q^{23} + 3q^{24} + 6q^{26} + 3q^{27} + 3q^{28} + 24q^{29} - 6q^{31} + 6q^{33} + 3q^{34} + 6q^{36} - 30q^{37} + 9q^{38} + 30q^{39} + 18q^{41} + 6q^{42} - 3q^{43} + 12q^{44} - 6q^{46} - 3q^{47} - 3q^{48} + 15q^{49} + 30q^{51} - 3q^{52} + 12q^{53} + 18q^{54} - 12q^{57} - 6q^{58} + 21q^{59} - 21q^{61} - 18q^{62} - 3q^{64} - 15q^{66} - 9q^{67} - 12q^{68} + 3q^{69} + 15q^{71} + 3q^{72} - 21q^{73} - 18q^{74} - 6q^{77} - 9q^{78} + 21q^{81} - 18q^{82} + 3q^{83} - 3q^{84} - 6q^{86} + 12q^{87} - 3q^{88} - 24q^{89} - 27q^{91} - 3q^{92} - 15q^{93} + 30q^{94} - 9q^{97} - 6q^{98} - 15q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(1\) \(-\zeta_{18}^{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
101.1
0.939693 + 0.342020i
−0.173648 0.984808i
0.939693 0.342020i
−0.766044 + 0.642788i
−0.173648 + 0.984808i
−0.766044 0.642788i
−0.766044 + 0.642788i 1.76604 + 0.642788i 0.173648 0.984808i 0 −1.76604 + 0.642788i 0.173648 0.300767i 0.500000 + 0.866025i 0.407604 + 0.342020i 0
251.1 0.939693 + 0.342020i 0.0603074 + 0.342020i 0.766044 + 0.642788i 0 −0.0603074 + 0.342020i 0.766044 1.32683i 0.500000 + 0.866025i 2.70574 0.984808i 0
301.1 −0.766044 0.642788i 1.76604 0.642788i 0.173648 + 0.984808i 0 −1.76604 0.642788i 0.173648 + 0.300767i 0.500000 0.866025i 0.407604 0.342020i 0
351.1 −0.173648 0.984808i 1.17365 0.984808i −0.939693 + 0.342020i 0 −1.17365 0.984808i −0.939693 + 1.62760i 0.500000 + 0.866025i −0.113341 + 0.642788i 0
651.1 0.939693 0.342020i 0.0603074 0.342020i 0.766044 0.642788i 0 −0.0603074 0.342020i 0.766044 + 1.32683i 0.500000 0.866025i 2.70574 + 0.984808i 0
701.1 −0.173648 + 0.984808i 1.17365 + 0.984808i −0.939693 0.342020i 0 −1.17365 + 0.984808i −0.939693 1.62760i 0.500000 0.866025i −0.113341 0.642788i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 701.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 950.2.l.f yes 6
5.b even 2 1 950.2.l.a 6
5.c odd 4 2 950.2.u.a 12
19.e even 9 1 inner 950.2.l.f yes 6
95.p even 18 1 950.2.l.a 6
95.q odd 36 2 950.2.u.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
950.2.l.a 6 5.b even 2 1
950.2.l.a 6 95.p even 18 1
950.2.l.f yes 6 1.a even 1 1 trivial
950.2.l.f yes 6 19.e even 9 1 inner
950.2.u.a 12 5.c odd 4 2
950.2.u.a 12 95.q odd 36 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 6 T_{3}^{5} + 15 T_{3}^{4} - 19 T_{3}^{3} + 12 T_{3}^{2} - 3 T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(950, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{3} + T^{6} \)
$3$ \( 1 - 3 T + 12 T^{2} - 19 T^{3} + 15 T^{4} - 6 T^{5} + T^{6} \)
$5$ \( T^{6} \)
$7$ \( 1 - 3 T + 9 T^{2} - 2 T^{3} + 3 T^{4} + T^{6} \)
$11$ \( 9 - 54 T + 333 T^{2} + 48 T^{3} + 27 T^{4} - 3 T^{5} + T^{6} \)
$13$ \( 5041 - 4899 T + 2211 T^{2} - 620 T^{3} + 120 T^{4} - 15 T^{5} + T^{6} \)
$17$ \( 2601 + 1377 T + 36 T^{2} - 3 T^{3} + 27 T^{4} - 6 T^{5} + T^{6} \)
$19$ \( 6859 - 2166 T - 228 T^{2} + 169 T^{3} - 12 T^{4} - 6 T^{5} + T^{6} \)
$23$ \( 2601 - 1836 T + 846 T^{2} - 300 T^{3} + 90 T^{4} - 15 T^{5} + T^{6} \)
$29$ \( 12321 - 7992 T + 4356 T^{2} - 1407 T^{3} + 252 T^{4} - 24 T^{5} + T^{6} \)
$31$ \( 5329 + 1095 T + 663 T^{2} + 56 T^{3} + 51 T^{4} + 6 T^{5} + T^{6} \)
$37$ \( ( -127 + 39 T + 15 T^{2} + T^{3} )^{2} \)
$41$ \( 5184 - 5184 T + 2592 T^{2} - 720 T^{3} + 144 T^{4} - 18 T^{5} + T^{6} \)
$43$ \( 1 - 3 T + 6 T^{2} - 8 T^{3} + 3 T^{4} + 3 T^{5} + T^{6} \)
$47$ \( 12321 - 1998 T - 477 T^{2} - 57 T^{3} + 36 T^{4} + 3 T^{5} + T^{6} \)
$53$ \( 9 + 81 T + 306 T^{2} - 132 T^{3} + 54 T^{4} - 12 T^{5} + T^{6} \)
$59$ \( 25281 + 12879 T + 4032 T^{2} + 408 T^{3} + 81 T^{4} - 21 T^{5} + T^{6} \)
$61$ \( 54289 + 55221 T + 20775 T^{2} + 3428 T^{3} + 348 T^{4} + 21 T^{5} + T^{6} \)
$67$ \( 5041 + 639 T + 1719 T^{2} - 152 T^{3} - 18 T^{4} + 9 T^{5} + T^{6} \)
$71$ \( 103041 - 89559 T + 27171 T^{2} - 3108 T^{3} + 252 T^{4} - 15 T^{5} + T^{6} \)
$73$ \( 11449 - 7383 T + 1680 T^{2} - 548 T^{3} + 183 T^{4} + 21 T^{5} + T^{6} \)
$79$ \( 1 - T^{3} + T^{6} \)
$83$ \( 2601 + 2754 T + 2763 T^{2} + 264 T^{3} + 63 T^{4} - 3 T^{5} + T^{6} \)
$89$ \( 71289 + 40851 T + 11538 T^{2} + 1596 T^{3} + 234 T^{4} + 24 T^{5} + T^{6} \)
$97$ \( 395641 + 22644 T - 8298 T^{2} + 748 T^{3} + 306 T^{4} + 9 T^{5} + T^{6} \)
show more
show less