Properties

Label 950.2.l.d
Level $950$
Weight $2$
Character orbit 950.l
Analytic conductor $7.586$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 950.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.58578819202\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\zeta_{18} + \zeta_{18}^{4} ) q^{2} + ( \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{3} -\zeta_{18}^{5} q^{4} + ( -1 - \zeta_{18} + \zeta_{18}^{3} ) q^{6} + ( 2 + 2 \zeta_{18} - 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} ) q^{7} + \zeta_{18}^{3} q^{8} + ( -1 + \zeta_{18} - \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{9} +O(q^{10})\) \( q + ( -\zeta_{18} + \zeta_{18}^{4} ) q^{2} + ( \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{3} -\zeta_{18}^{5} q^{4} + ( -1 - \zeta_{18} + \zeta_{18}^{3} ) q^{6} + ( 2 + 2 \zeta_{18} - 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} ) q^{7} + \zeta_{18}^{3} q^{8} + ( -1 + \zeta_{18} - \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{9} + ( -2 \zeta_{18} + \zeta_{18}^{2} - 2 \zeta_{18}^{3} + \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{11} + ( \zeta_{18}^{2} - \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{12} + ( -2 - 2 \zeta_{18} - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{13} + ( 2 - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{14} -\zeta_{18} q^{16} + ( 4 - \zeta_{18} + 4 \zeta_{18}^{2} - 4 \zeta_{18}^{3} + \zeta_{18}^{4} - 4 \zeta_{18}^{5} ) q^{17} + ( 1 - \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{18} + ( 4 + 2 \zeta_{18} - 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - 2 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{19} + ( 4 - 2 \zeta_{18} + 2 \zeta_{18}^{4} - 4 \zeta_{18}^{5} ) q^{21} + ( -1 + 2 \zeta_{18} + \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{22} + ( 2 - 2 \zeta_{18} ) q^{23} + ( -1 + \zeta_{18}^{2} + \zeta_{18}^{3} ) q^{24} + ( 2 + 2 \zeta_{18} - 2 \zeta_{18}^{3} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{26} + ( -3 \zeta_{18} - \zeta_{18}^{3} - 3 \zeta_{18}^{5} ) q^{27} + ( 2 - 2 \zeta_{18} - 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} ) q^{28} + ( -2 - 2 \zeta_{18} + 4 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - 2 \zeta_{18}^{4} ) q^{29} + ( 2 - 4 \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{31} + ( \zeta_{18}^{2} - \zeta_{18}^{5} ) q^{32} + ( -\zeta_{18}^{3} - 3 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{33} + ( -4 + 4 \zeta_{18}^{3} + 4 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{34} + ( -\zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{36} + ( 2 + 2 \zeta_{18} + 2 \zeta_{18}^{2} - 4 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{37} + ( 2 - 2 \zeta_{18} - \zeta_{18}^{3} + 4 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{38} + ( -2 - 4 \zeta_{18} - 4 \zeta_{18}^{2} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{39} + ( 1 - \zeta_{18}^{3} + \zeta_{18}^{5} ) q^{41} + ( -4 \zeta_{18} + 4 \zeta_{18}^{3} + 4 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{42} + ( 2 - 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - 3 \zeta_{18}^{4} ) q^{43} + ( -1 - \zeta_{18} - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} - \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{44} + ( -2 \zeta_{18} + 2 \zeta_{18}^{2} + 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{46} + ( -4 - 2 \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - 4 \zeta_{18}^{4} ) q^{47} + ( -1 - \zeta_{18}^{4} ) q^{48} + ( 8 \zeta_{18} - 4 \zeta_{18}^{2} - 5 \zeta_{18}^{3} - 4 \zeta_{18}^{4} + 8 \zeta_{18}^{5} ) q^{49} + ( 3 + 3 \zeta_{18} + 4 \zeta_{18}^{2} + \zeta_{18}^{3} - 4 \zeta_{18}^{4} - 4 \zeta_{18}^{5} ) q^{51} + ( 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{52} + ( -6 + 2 \zeta_{18} + 4 \zeta_{18}^{3} + 4 \zeta_{18}^{4} ) q^{53} + ( \zeta_{18} + 3 \zeta_{18}^{2} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{5} ) q^{54} + ( 2 + 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{56} + ( 4 + \zeta_{18}^{2} + \zeta_{18}^{4} - 5 \zeta_{18}^{5} ) q^{57} + ( -4 + 4 \zeta_{18} + 4 \zeta_{18}^{2} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{58} + ( 1 - 2 \zeta_{18} + 3 \zeta_{18}^{2} - 3 \zeta_{18}^{3} + 2 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{59} + ( -2 \zeta_{18} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} - 6 \zeta_{18}^{5} ) q^{61} + ( -2 + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} - 4 \zeta_{18}^{5} ) q^{62} + ( -2 - 2 \zeta_{18} + 2 \zeta_{18}^{2} + 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{63} + ( -1 + \zeta_{18}^{3} ) q^{64} + ( \zeta_{18} + 3 \zeta_{18}^{2} + \zeta_{18}^{3} ) q^{66} + ( 3 - 3 \zeta_{18} + 6 \zeta_{18}^{2} - 3 \zeta_{18}^{3} + 3 \zeta_{18}^{4} ) q^{67} + ( -4 \zeta_{18}^{2} + \zeta_{18}^{3} - 4 \zeta_{18}^{4} ) q^{68} + ( -2 + 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{69} + ( -2 + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - 4 \zeta_{18}^{4} - 4 \zeta_{18}^{5} ) q^{71} + ( -1 + \zeta_{18} - \zeta_{18}^{5} ) q^{72} + ( 3 + 4 \zeta_{18} + 7 \zeta_{18}^{2} + 4 \zeta_{18}^{3} - 4 \zeta_{18}^{5} ) q^{73} + ( -2 - 2 \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{74} + ( -\zeta_{18} - 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{76} + ( 2 - 6 \zeta_{18} - 6 \zeta_{18}^{2} + 2 \zeta_{18}^{4} + 4 \zeta_{18}^{5} ) q^{77} + ( 4 + 2 \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - 2 \zeta_{18}^{4} - 4 \zeta_{18}^{5} ) q^{78} + ( 6 \zeta_{18} + 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{79} + ( -5 + 5 \zeta_{18}^{2} - \zeta_{18}^{3} - 3 \zeta_{18}^{4} - 6 \zeta_{18}^{5} ) q^{81} + ( -\zeta_{18}^{3} + \zeta_{18}^{4} ) q^{82} + ( 2 + \zeta_{18} + 3 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - 4 \zeta_{18}^{4} - 4 \zeta_{18}^{5} ) q^{83} + ( -4 \zeta_{18} + 2 \zeta_{18}^{3} - 4 \zeta_{18}^{5} ) q^{84} + ( 2 + 3 \zeta_{18}^{2} + 2 \zeta_{18}^{4} ) q^{86} + ( 6 \zeta_{18} - 4 \zeta_{18}^{2} - 6 \zeta_{18}^{3} - 4 \zeta_{18}^{4} + 6 \zeta_{18}^{5} ) q^{87} + ( 2 - \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{88} + ( -4 - 4 \zeta_{18} - 3 \zeta_{18}^{2} + 8 \zeta_{18}^{3} - 4 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{89} + ( -4 + 4 \zeta_{18}^{3} + 4 \zeta_{18}^{4} + 8 \zeta_{18}^{5} ) q^{91} + ( -2 + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{92} + ( -2 - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{5} ) q^{93} + ( -2 + 6 \zeta_{18} + 6 \zeta_{18}^{2} - 4 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{94} + ( \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{4} ) q^{96} + ( \zeta_{18}^{2} - \zeta_{18}^{3} ) q^{97} + ( 4 + 5 \zeta_{18} - 4 \zeta_{18}^{2} - 8 \zeta_{18}^{3} + 8 \zeta_{18}^{5} ) q^{98} + ( 4 - 3 \zeta_{18} - \zeta_{18}^{3} - \zeta_{18}^{4} + 5 \zeta_{18}^{5} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + 3q^{3} - 3q^{6} + 6q^{7} + 3q^{8} - 3q^{9} + O(q^{10}) \) \( 6q + 3q^{3} - 3q^{6} + 6q^{7} + 3q^{8} - 3q^{9} - 6q^{11} - 12q^{13} + 12q^{14} + 12q^{17} + 6q^{18} + 18q^{19} + 24q^{21} + 12q^{23} - 3q^{24} + 6q^{26} - 3q^{27} + 6q^{28} - 18q^{29} + 6q^{31} - 3q^{33} - 12q^{34} - 3q^{36} + 12q^{37} + 9q^{38} - 12q^{39} + 3q^{41} + 12q^{42} + 6q^{43} - 30q^{47} - 6q^{48} - 15q^{49} + 21q^{51} + 6q^{52} - 24q^{53} + 9q^{54} + 12q^{56} + 24q^{57} - 24q^{58} - 3q^{59} + 6q^{61} - 18q^{62} - 12q^{63} - 3q^{64} + 3q^{66} + 9q^{67} + 3q^{68} - 6q^{69} - 18q^{71} - 6q^{72} + 30q^{73} - 18q^{74} - 6q^{76} + 12q^{77} + 18q^{78} + 6q^{79} - 33q^{81} - 3q^{82} + 6q^{83} + 6q^{84} + 12q^{86} - 18q^{87} + 6q^{88} - 12q^{91} - 6q^{92} - 6q^{93} - 12q^{94} - 3q^{97} + 21q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(1\) \(-\zeta_{18}^{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
101.1
0.939693 + 0.342020i
−0.173648 0.984808i
0.939693 0.342020i
−0.766044 + 0.642788i
−0.173648 + 0.984808i
−0.766044 0.642788i
−0.766044 + 0.642788i 1.43969 + 0.524005i 0.173648 0.984808i 0 −1.43969 + 0.524005i 1.34730 2.33359i 0.500000 + 0.866025i −0.500000 0.419550i 0
251.1 0.939693 + 0.342020i 0.326352 + 1.85083i 0.766044 + 0.642788i 0 −0.326352 + 1.85083i 2.53209 4.38571i 0.500000 + 0.866025i −0.500000 + 0.181985i 0
301.1 −0.766044 0.642788i 1.43969 0.524005i 0.173648 + 0.984808i 0 −1.43969 0.524005i 1.34730 + 2.33359i 0.500000 0.866025i −0.500000 + 0.419550i 0
351.1 −0.173648 0.984808i −0.266044 + 0.223238i −0.939693 + 0.342020i 0 0.266044 + 0.223238i −0.879385 + 1.52314i 0.500000 + 0.866025i −0.500000 + 2.83564i 0
651.1 0.939693 0.342020i 0.326352 1.85083i 0.766044 0.642788i 0 −0.326352 1.85083i 2.53209 + 4.38571i 0.500000 0.866025i −0.500000 0.181985i 0
701.1 −0.173648 + 0.984808i −0.266044 0.223238i −0.939693 0.342020i 0 0.266044 0.223238i −0.879385 1.52314i 0.500000 0.866025i −0.500000 2.83564i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 701.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 950.2.l.d 6
5.b even 2 1 38.2.e.a 6
5.c odd 4 2 950.2.u.b 12
15.d odd 2 1 342.2.u.c 6
19.e even 9 1 inner 950.2.l.d 6
20.d odd 2 1 304.2.u.c 6
95.d odd 2 1 722.2.e.k 6
95.h odd 6 1 722.2.e.a 6
95.h odd 6 1 722.2.e.l 6
95.i even 6 1 722.2.e.b 6
95.i even 6 1 722.2.e.m 6
95.o odd 18 1 722.2.a.k 3
95.o odd 18 2 722.2.c.l 6
95.o odd 18 1 722.2.e.a 6
95.o odd 18 1 722.2.e.k 6
95.o odd 18 1 722.2.e.l 6
95.p even 18 1 38.2.e.a 6
95.p even 18 1 722.2.a.l 3
95.p even 18 2 722.2.c.k 6
95.p even 18 1 722.2.e.b 6
95.p even 18 1 722.2.e.m 6
95.q odd 36 2 950.2.u.b 12
285.bd odd 18 1 342.2.u.c 6
285.bd odd 18 1 6498.2.a.bl 3
285.bf even 18 1 6498.2.a.bq 3
380.ba odd 18 1 304.2.u.c 6
380.ba odd 18 1 5776.2.a.bn 3
380.bb even 18 1 5776.2.a.bo 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.2.e.a 6 5.b even 2 1
38.2.e.a 6 95.p even 18 1
304.2.u.c 6 20.d odd 2 1
304.2.u.c 6 380.ba odd 18 1
342.2.u.c 6 15.d odd 2 1
342.2.u.c 6 285.bd odd 18 1
722.2.a.k 3 95.o odd 18 1
722.2.a.l 3 95.p even 18 1
722.2.c.k 6 95.p even 18 2
722.2.c.l 6 95.o odd 18 2
722.2.e.a 6 95.h odd 6 1
722.2.e.a 6 95.o odd 18 1
722.2.e.b 6 95.i even 6 1
722.2.e.b 6 95.p even 18 1
722.2.e.k 6 95.d odd 2 1
722.2.e.k 6 95.o odd 18 1
722.2.e.l 6 95.h odd 6 1
722.2.e.l 6 95.o odd 18 1
722.2.e.m 6 95.i even 6 1
722.2.e.m 6 95.p even 18 1
950.2.l.d 6 1.a even 1 1 trivial
950.2.l.d 6 19.e even 9 1 inner
950.2.u.b 12 5.c odd 4 2
950.2.u.b 12 95.q odd 36 2
5776.2.a.bn 3 380.ba odd 18 1
5776.2.a.bo 3 380.bb even 18 1
6498.2.a.bl 3 285.bd odd 18 1
6498.2.a.bq 3 285.bf even 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 3 T_{3}^{5} + 6 T_{3}^{4} - 8 T_{3}^{3} + 3 T_{3}^{2} + 3 T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(950, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{3} + T^{6} \)
$3$ \( 1 + 3 T + 3 T^{2} - 8 T^{3} + 6 T^{4} - 3 T^{5} + T^{6} \)
$5$ \( T^{6} \)
$7$ \( 576 + 144 T^{2} - 48 T^{3} + 36 T^{4} - 6 T^{5} + T^{6} \)
$11$ \( 361 - 57 T + 123 T^{2} + 56 T^{3} + 33 T^{4} + 6 T^{5} + T^{6} \)
$13$ \( 64 + 96 T + 96 T^{2} + 64 T^{3} + 48 T^{4} + 12 T^{5} + T^{6} \)
$17$ \( 12321 - 11988 T + 4356 T^{2} - 753 T^{3} + 108 T^{4} - 12 T^{5} + T^{6} \)
$19$ \( 6859 - 6498 T + 3078 T^{2} - 883 T^{3} + 162 T^{4} - 18 T^{5} + T^{6} \)
$23$ \( 64 - 96 T + 192 T^{2} - 152 T^{3} + 60 T^{4} - 12 T^{5} + T^{6} \)
$29$ \( 23104 + 16416 T + 5616 T^{2} + 928 T^{3} + 144 T^{4} + 18 T^{5} + T^{6} \)
$31$ \( 64 + 192 T + 528 T^{2} + 160 T^{3} + 60 T^{4} - 6 T^{5} + T^{6} \)
$37$ \( ( 136 - 24 T - 6 T^{2} + T^{3} )^{2} \)
$41$ \( 1 - 6 T + 12 T^{2} - 8 T^{3} + 6 T^{4} - 3 T^{5} + T^{6} \)
$43$ \( 289 - 714 T + 786 T^{2} - 271 T^{3} + 42 T^{4} - 6 T^{5} + T^{6} \)
$47$ \( 87616 + 24864 T + 8736 T^{2} + 2368 T^{3} + 372 T^{4} + 30 T^{5} + T^{6} \)
$53$ \( 18496 + 21216 T + 11136 T^{2} + 2152 T^{3} + 276 T^{4} + 24 T^{5} + T^{6} \)
$59$ \( 9 - 18 T^{2} + 24 T^{3} + 54 T^{4} + 3 T^{5} + T^{6} \)
$61$ \( 23104 + 1824 T + 1920 T^{2} + 512 T^{3} - 12 T^{4} - 6 T^{5} + T^{6} \)
$67$ \( 6561 + 6561 T + 729 T^{2} - 648 T^{3} + 162 T^{4} - 9 T^{5} + T^{6} \)
$71$ \( 23104 + 21888 T + 8352 T^{2} + 1664 T^{3} + 216 T^{4} + 18 T^{5} + T^{6} \)
$73$ \( 3249 + 5643 T + 4140 T^{2} - 645 T^{3} + 279 T^{4} - 30 T^{5} + T^{6} \)
$79$ \( 18496 + 3264 T + 3504 T^{2} + 8 T^{3} - 48 T^{4} - 6 T^{5} + T^{6} \)
$83$ \( 2601 - 1377 T + 1035 T^{2} + 60 T^{3} + 63 T^{4} - 6 T^{5} + T^{6} \)
$89$ \( 962361 + 141264 T + 4860 T^{2} + 315 T^{3} + 36 T^{4} + T^{6} \)
$97$ \( 1 - 3 T + 3 T^{2} + 8 T^{3} + 6 T^{4} + 3 T^{5} + T^{6} \)
show more
show less