Properties

Label 950.2.j.b
Level $950$
Weight $2$
Character orbit 950.j
Analytic conductor $7.586$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 950.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.58578819202\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{12} q^{2} + \zeta_{12} q^{3} + \zeta_{12}^{2} q^{4} -\zeta_{12}^{2} q^{6} -2 \zeta_{12}^{3} q^{7} -\zeta_{12}^{3} q^{8} -2 \zeta_{12}^{2} q^{9} +O(q^{10})\) \( q -\zeta_{12} q^{2} + \zeta_{12} q^{3} + \zeta_{12}^{2} q^{4} -\zeta_{12}^{2} q^{6} -2 \zeta_{12}^{3} q^{7} -\zeta_{12}^{3} q^{8} -2 \zeta_{12}^{2} q^{9} + \zeta_{12}^{3} q^{12} + ( -6 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{13} + ( -2 + 2 \zeta_{12}^{2} ) q^{14} + ( -1 + \zeta_{12}^{2} ) q^{16} -7 \zeta_{12} q^{17} + 2 \zeta_{12}^{3} q^{18} + ( -5 + 3 \zeta_{12}^{2} ) q^{19} + ( 2 - 2 \zeta_{12}^{2} ) q^{21} + ( -2 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{23} + ( 1 - \zeta_{12}^{2} ) q^{24} + 6 q^{26} -5 \zeta_{12}^{3} q^{27} + ( 2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{28} + 10 \zeta_{12}^{2} q^{29} -2 q^{31} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{32} + 7 \zeta_{12}^{2} q^{34} + ( 2 - 2 \zeta_{12}^{2} ) q^{36} + 4 \zeta_{12}^{3} q^{37} + ( 5 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{38} -6 q^{39} + ( -2 + 2 \zeta_{12}^{2} ) q^{41} + ( -2 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{42} -12 \zeta_{12} q^{43} + 2 q^{46} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{48} + 3 q^{49} -7 \zeta_{12}^{2} q^{51} -6 \zeta_{12} q^{52} + ( -5 + 5 \zeta_{12}^{2} ) q^{54} -2 q^{56} + ( -5 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{57} -10 \zeta_{12}^{3} q^{58} + ( -1 + \zeta_{12}^{2} ) q^{59} -8 \zeta_{12}^{2} q^{61} + 2 \zeta_{12} q^{62} + ( -4 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{63} - q^{64} + ( 8 \zeta_{12} - 8 \zeta_{12}^{3} ) q^{67} -7 \zeta_{12}^{3} q^{68} -2 q^{69} + ( 12 - 12 \zeta_{12}^{2} ) q^{71} + ( -2 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{72} -3 \zeta_{12} q^{73} + ( 4 - 4 \zeta_{12}^{2} ) q^{74} + ( -3 - 2 \zeta_{12}^{2} ) q^{76} + 6 \zeta_{12} q^{78} + ( -4 + 4 \zeta_{12}^{2} ) q^{79} + ( -1 + \zeta_{12}^{2} ) q^{81} + ( 2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{82} + 13 \zeta_{12}^{3} q^{83} + 2 q^{84} + 12 \zeta_{12}^{2} q^{86} + 10 \zeta_{12}^{3} q^{87} -13 \zeta_{12}^{2} q^{89} + 12 \zeta_{12}^{2} q^{91} -2 \zeta_{12} q^{92} -2 \zeta_{12} q^{93} + q^{96} -15 \zeta_{12} q^{97} -3 \zeta_{12} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{4} - 2q^{6} - 4q^{9} + O(q^{10}) \) \( 4q + 2q^{4} - 2q^{6} - 4q^{9} - 4q^{14} - 2q^{16} - 14q^{19} + 4q^{21} + 2q^{24} + 24q^{26} + 20q^{29} - 8q^{31} + 14q^{34} + 4q^{36} - 24q^{39} - 4q^{41} + 8q^{46} + 12q^{49} - 14q^{51} - 10q^{54} - 8q^{56} - 2q^{59} - 16q^{61} - 4q^{64} - 8q^{69} + 24q^{71} + 8q^{74} - 16q^{76} - 8q^{79} - 2q^{81} + 8q^{84} + 24q^{86} - 26q^{89} + 24q^{91} + 4q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(-\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i 0.866025 + 0.500000i 0.500000 + 0.866025i 0 −0.500000 0.866025i 2.00000i 1.00000i −1.00000 1.73205i 0
49.2 0.866025 + 0.500000i −0.866025 0.500000i 0.500000 + 0.866025i 0 −0.500000 0.866025i 2.00000i 1.00000i −1.00000 1.73205i 0
349.1 −0.866025 + 0.500000i 0.866025 0.500000i 0.500000 0.866025i 0 −0.500000 + 0.866025i 2.00000i 1.00000i −1.00000 + 1.73205i 0
349.2 0.866025 0.500000i −0.866025 + 0.500000i 0.500000 0.866025i 0 −0.500000 + 0.866025i 2.00000i 1.00000i −1.00000 + 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
19.c even 3 1 inner
95.i even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 950.2.j.b 4
5.b even 2 1 inner 950.2.j.b 4
5.c odd 4 1 950.2.e.b 2
5.c odd 4 1 950.2.e.g yes 2
19.c even 3 1 inner 950.2.j.b 4
95.i even 6 1 inner 950.2.j.b 4
95.m odd 12 1 950.2.e.b 2
95.m odd 12 1 950.2.e.g yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
950.2.e.b 2 5.c odd 4 1
950.2.e.b 2 95.m odd 12 1
950.2.e.g yes 2 5.c odd 4 1
950.2.e.g yes 2 95.m odd 12 1
950.2.j.b 4 1.a even 1 1 trivial
950.2.j.b 4 5.b even 2 1 inner
950.2.j.b 4 19.c even 3 1 inner
950.2.j.b 4 95.i even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(950, [\chi])\):

\( T_{3}^{4} - T_{3}^{2} + 1 \)
\( T_{7}^{2} + 4 \)
\( T_{11} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{2} + T^{4} \)
$3$ \( 1 - T^{2} + T^{4} \)
$5$ \( T^{4} \)
$7$ \( ( 4 + T^{2} )^{2} \)
$11$ \( T^{4} \)
$13$ \( 1296 - 36 T^{2} + T^{4} \)
$17$ \( 2401 - 49 T^{2} + T^{4} \)
$19$ \( ( 19 + 7 T + T^{2} )^{2} \)
$23$ \( 16 - 4 T^{2} + T^{4} \)
$29$ \( ( 100 - 10 T + T^{2} )^{2} \)
$31$ \( ( 2 + T )^{4} \)
$37$ \( ( 16 + T^{2} )^{2} \)
$41$ \( ( 4 + 2 T + T^{2} )^{2} \)
$43$ \( 20736 - 144 T^{2} + T^{4} \)
$47$ \( T^{4} \)
$53$ \( T^{4} \)
$59$ \( ( 1 + T + T^{2} )^{2} \)
$61$ \( ( 64 + 8 T + T^{2} )^{2} \)
$67$ \( 4096 - 64 T^{2} + T^{4} \)
$71$ \( ( 144 - 12 T + T^{2} )^{2} \)
$73$ \( 81 - 9 T^{2} + T^{4} \)
$79$ \( ( 16 + 4 T + T^{2} )^{2} \)
$83$ \( ( 169 + T^{2} )^{2} \)
$89$ \( ( 169 + 13 T + T^{2} )^{2} \)
$97$ \( 50625 - 225 T^{2} + T^{4} \)
show more
show less