Newspace parameters
Level: | \( N \) | \(=\) | \( 950 = 2 \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 950.h (of order \(5\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.58578819202\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
191.1 | 0.809017 | + | 0.587785i | −0.864167 | − | 2.65963i | 0.309017 | + | 0.951057i | −0.315348 | + | 2.21372i | 0.864167 | − | 2.65963i | 4.09905 | −0.309017 | + | 0.951057i | −3.89981 | + | 2.83338i | −1.55631 | + | 1.60558i | ||
191.2 | 0.809017 | + | 0.587785i | −0.575164 | − | 1.77017i | 0.309017 | + | 0.951057i | −2.23087 | + | 0.152345i | 0.575164 | − | 1.77017i | 2.55490 | −0.309017 | + | 0.951057i | −0.375647 | + | 0.272924i | −1.89436 | − | 1.18802i | ||
191.3 | 0.809017 | + | 0.587785i | −0.457139 | − | 1.40693i | 0.309017 | + | 0.951057i | 1.65863 | − | 1.49965i | 0.457139 | − | 1.40693i | 0.448991 | −0.309017 | + | 0.951057i | 0.656575 | − | 0.477030i | 2.22333 | − | 0.238322i | ||
191.4 | 0.809017 | + | 0.587785i | −0.432606 | − | 1.33142i | 0.309017 | + | 0.951057i | −1.38217 | − | 1.75773i | 0.432606 | − | 1.33142i | −3.95270 | −0.309017 | + | 0.951057i | 0.841508 | − | 0.611391i | −0.0850285 | − | 2.23445i | ||
191.5 | 0.809017 | + | 0.587785i | 0.140614 | + | 0.432766i | 0.309017 | + | 0.951057i | 0.187653 | + | 2.22818i | −0.140614 | + | 0.432766i | 3.42213 | −0.309017 | + | 0.951057i | 2.25954 | − | 1.64165i | −1.15788 | + | 1.91294i | ||
191.6 | 0.809017 | + | 0.587785i | 0.188387 | + | 0.579797i | 0.309017 | + | 0.951057i | 1.27289 | − | 1.83841i | −0.188387 | + | 0.579797i | 0.873784 | −0.309017 | + | 0.951057i | 2.12638 | − | 1.54490i | 2.11038 | − | 0.739116i | ||
191.7 | 0.809017 | + | 0.587785i | 0.401228 | + | 1.23485i | 0.309017 | + | 0.951057i | 1.49048 | + | 1.66687i | −0.401228 | + | 1.23485i | −2.35656 | −0.309017 | + | 0.951057i | 1.06317 | − | 0.772440i | 0.226063 | + | 2.22461i | ||
191.8 | 0.809017 | + | 0.587785i | 0.625820 | + | 1.92608i | 0.309017 | + | 0.951057i | −0.243465 | − | 2.22277i | −0.625820 | + | 1.92608i | 4.25141 | −0.309017 | + | 0.951057i | −0.891064 | + | 0.647396i | 1.10955 | − | 1.94137i | ||
191.9 | 0.809017 | + | 0.587785i | 0.688874 | + | 2.12014i | 0.309017 | + | 0.951057i | −0.561048 | − | 2.16454i | −0.688874 | + | 2.12014i | 0.565964 | −0.309017 | + | 0.951057i | −1.59338 | + | 1.15766i | 0.818386 | − | 2.08092i | ||
191.10 | 0.809017 | + | 0.587785i | 0.739754 | + | 2.27673i | 0.309017 | + | 0.951057i | −2.19207 | − | 0.441377i | −0.739754 | + | 2.27673i | −0.427253 | −0.309017 | + | 0.951057i | −2.20921 | + | 1.60508i | −1.51399 | − | 1.64555i | ||
191.11 | 0.809017 | + | 0.587785i | 0.971450 | + | 2.98981i | 0.309017 | + | 0.951057i | 1.62433 | + | 1.53673i | −0.971450 | + | 2.98981i | −0.243654 | −0.309017 | + | 0.951057i | −5.56823 | + | 4.04555i | 0.410843 | + | 2.19800i | ||
381.1 | −0.309017 | − | 0.951057i | −2.63401 | + | 1.91372i | −0.809017 | + | 0.587785i | −1.39221 | + | 1.74978i | 2.63401 | + | 1.91372i | −3.22496 | 0.809017 | + | 0.587785i | 2.34863 | − | 7.22835i | 2.09436 | + | 0.783360i | ||
381.2 | −0.309017 | − | 0.951057i | −2.47282 | + | 1.79661i | −0.809017 | + | 0.587785i | 2.01410 | − | 0.971294i | 2.47282 | + | 1.79661i | 3.79510 | 0.809017 | + | 0.587785i | 1.95997 | − | 6.03218i | −1.54615 | − | 1.61537i | ||
381.3 | −0.309017 | − | 0.951057i | −1.75602 | + | 1.27582i | −0.809017 | + | 0.587785i | 1.11250 | + | 1.93968i | 1.75602 | + | 1.27582i | −1.18687 | 0.809017 | + | 0.587785i | 0.528832 | − | 1.62758i | 1.50096 | − | 1.65744i | ||
381.4 | −0.309017 | − | 0.951057i | −1.05744 | + | 0.768272i | −0.809017 | + | 0.587785i | −2.23141 | + | 0.144237i | 1.05744 | + | 0.768272i | −0.741348 | 0.809017 | + | 0.587785i | −0.399123 | + | 1.22837i | 0.826721 | + | 2.07763i | ||
381.5 | −0.309017 | − | 0.951057i | −0.444175 | + | 0.322712i | −0.809017 | + | 0.587785i | −0.351941 | + | 2.20820i | 0.444175 | + | 0.322712i | 4.87281 | 0.809017 | + | 0.587785i | −0.833903 | + | 2.56649i | 2.20888 | − | 0.347655i | ||
381.6 | −0.309017 | − | 0.951057i | −0.417797 | + | 0.303547i | −0.809017 | + | 0.587785i | −1.20950 | − | 1.88072i | 0.417797 | + | 0.303547i | 0.938984 | 0.809017 | + | 0.587785i | −0.844638 | + | 2.59953i | −1.41492 | + | 1.73148i | ||
381.7 | −0.309017 | − | 0.951057i | 0.573480 | − | 0.416658i | −0.809017 | + | 0.587785i | −0.120367 | − | 2.23283i | −0.573480 | − | 0.416658i | −2.96937 | 0.809017 | + | 0.587785i | −0.771775 | + | 2.37528i | −2.08635 | + | 0.804457i | ||
381.8 | −0.309017 | − | 0.951057i | 0.685786 | − | 0.498253i | −0.809017 | + | 0.587785i | 2.20717 | − | 0.358335i | −0.685786 | − | 0.498253i | 3.58997 | 0.809017 | + | 0.587785i | −0.705004 | + | 2.16978i | −1.02285 | − | 1.98841i | ||
381.9 | −0.309017 | − | 0.951057i | 1.40669 | − | 1.02202i | −0.809017 | + | 0.587785i | −2.00793 | + | 0.983990i | −1.40669 | − | 1.02202i | 0.690753 | 0.809017 | + | 0.587785i | 0.00719592 | − | 0.0221468i | 1.55631 | + | 1.60558i | ||
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 950.2.h.e | ✓ | 44 |
25.d | even | 5 | 1 | inner | 950.2.h.e | ✓ | 44 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
950.2.h.e | ✓ | 44 | 1.a | even | 1 | 1 | trivial |
950.2.h.e | ✓ | 44 | 25.d | even | 5 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(T_{3}^{44} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(950, [\chi])\).