Properties

Label 950.2.e.m.201.2
Level $950$
Weight $2$
Character 950.201
Analytic conductor $7.586$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 950.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.58578819202\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.39075800976.1
Defining polynomial: \(x^{8} - x^{7} + 12 x^{6} - 13 x^{5} + 125 x^{4} - 116 x^{3} + 232 x^{2} + 96 x + 64\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 201.2
Root \(0.851703 - 1.47519i\) of defining polynomial
Character \(\chi\) \(=\) 950.201
Dual form 950.2.e.m.501.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.851703 + 1.47519i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.851703 + 1.47519i) q^{6} +3.74324 q^{7} -1.00000 q^{8} +(0.0492032 + 0.0852224i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.851703 + 1.47519i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.851703 + 1.47519i) q^{6} +3.74324 q^{7} -1.00000 q^{8} +(0.0492032 + 0.0852224i) q^{9} +3.64483 q^{11} +1.70341 q^{12} +(-3.01991 - 5.23065i) q^{13} +(1.87162 - 3.24174i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-2.04920 + 3.54932i) q^{17} +0.0984064 q^{18} +(-0.697500 - 4.30273i) q^{19} +(-3.18813 + 5.52200i) q^{21} +(1.82241 - 3.15651i) q^{22} +(2.34233 + 4.05703i) q^{23} +(0.851703 - 1.47519i) q^{24} -6.03983 q^{26} -5.27785 q^{27} +(-1.87162 - 3.24174i) q^{28} +(3.32241 + 5.75459i) q^{29} +10.8416 q^{31} +(0.500000 + 0.866025i) q^{32} +(-3.10431 + 5.37683i) q^{33} +(2.04920 + 3.54932i) q^{34} +(0.0492032 - 0.0852224i) q^{36} +7.75505 q^{37} +(-4.07502 - 1.54731i) q^{38} +10.2883 q^{39} +(3.99653 - 6.92220i) q^{41} +(3.18813 + 5.52200i) q^{42} +(-2.19403 + 3.80018i) q^{43} +(-1.82241 - 3.15651i) q^{44} +4.68466 q^{46} +(0.871618 + 1.50969i) q^{47} +(-0.851703 - 1.47519i) q^{48} +7.01181 q^{49} +(-3.49063 - 6.04594i) q^{51} +(-3.01991 + 5.23065i) q^{52} +(-0.871618 - 1.50969i) q^{53} +(-2.63892 + 4.57075i) q^{54} -3.74324 q^{56} +(6.94142 + 2.63570i) q^{57} +6.64483 q^{58} +(3.67412 - 6.36376i) q^{59} +(-1.15420 - 1.99914i) q^{61} +(5.42082 - 9.38914i) q^{62} +(0.184179 + 0.319008i) q^{63} +1.00000 q^{64} +(3.10431 + 5.37683i) q^{66} +(-3.37162 - 5.83981i) q^{67} +4.09841 q^{68} -7.97988 q^{69} +(0.994093 - 1.72182i) q^{71} +(-0.0492032 - 0.0852224i) q^{72} +(-4.59494 + 7.95867i) q^{73} +(3.87752 - 6.71607i) q^{74} +(-3.37752 + 2.75542i) q^{76} +13.6435 q^{77} +(5.14414 - 8.90992i) q^{78} +(-3.07849 + 5.33210i) q^{79} +(4.34755 - 7.53017i) q^{81} +(-3.99653 - 6.92220i) q^{82} +5.69159 q^{83} +6.37625 q^{84} +(2.19403 + 3.80018i) q^{86} -11.3188 q^{87} -3.64483 q^{88} +(5.53983 + 9.59527i) q^{89} +(-11.3043 - 19.5795i) q^{91} +(2.34233 - 4.05703i) q^{92} +(-9.23386 + 15.9935i) q^{93} +1.74324 q^{94} -1.70341 q^{96} +(-0.752610 + 1.30356i) q^{97} +(3.50591 - 6.07241i) q^{98} +(0.179337 + 0.310621i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 4q^{2} - q^{3} - 4q^{4} + q^{6} - 12q^{7} - 8q^{8} - 11q^{9} + O(q^{10}) \) \( 8q + 4q^{2} - q^{3} - 4q^{4} + q^{6} - 12q^{7} - 8q^{8} - 11q^{9} + 10q^{11} + 2q^{12} - 9q^{13} - 6q^{14} - 4q^{16} - 5q^{17} - 22q^{18} - q^{21} + 5q^{22} - 6q^{23} + q^{24} - 18q^{26} - 16q^{27} + 6q^{28} + 17q^{29} + 22q^{31} + 4q^{32} + 4q^{33} + 5q^{34} - 11q^{36} + 8q^{37} - 36q^{39} + 7q^{41} + q^{42} + 13q^{43} - 5q^{44} - 12q^{46} - 14q^{47} - q^{48} + 44q^{49} - 9q^{51} - 9q^{52} + 14q^{53} - 8q^{54} + 12q^{56} + 48q^{57} + 34q^{58} + 14q^{59} - 9q^{61} + 11q^{62} + 45q^{63} + 8q^{64} - 4q^{66} - 6q^{67} + 10q^{68} + 54q^{69} + 14q^{71} + 11q^{72} + 11q^{73} + 4q^{74} + 10q^{77} - 18q^{78} - 17q^{79} - 36q^{81} - 7q^{82} + 46q^{83} + 2q^{84} - 13q^{86} + 2q^{87} - 10q^{88} + 14q^{89} - 25q^{91} - 6q^{92} - 13q^{93} - 28q^{94} - 2q^{96} + 17q^{97} + 22q^{98} - 60q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −0.851703 + 1.47519i −0.491731 + 0.851703i −0.999955 0.00952194i \(-0.996969\pi\)
0.508224 + 0.861225i \(0.330302\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 0.851703 + 1.47519i 0.347706 + 0.602245i
\(7\) 3.74324 1.41481 0.707405 0.706808i \(-0.249866\pi\)
0.707405 + 0.706808i \(0.249866\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.0492032 + 0.0852224i 0.0164011 + 0.0284075i
\(10\) 0 0
\(11\) 3.64483 1.09896 0.549479 0.835508i \(-0.314826\pi\)
0.549479 + 0.835508i \(0.314826\pi\)
\(12\) 1.70341 0.491731
\(13\) −3.01991 5.23065i −0.837574 1.45072i −0.891918 0.452198i \(-0.850640\pi\)
0.0543441 0.998522i \(-0.482693\pi\)
\(14\) 1.87162 3.24174i 0.500211 0.866391i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.04920 + 3.54932i −0.497005 + 0.860838i −0.999994 0.00345514i \(-0.998900\pi\)
0.502989 + 0.864293i \(0.332234\pi\)
\(18\) 0.0984064 0.0231946
\(19\) −0.697500 4.30273i −0.160017 0.987114i
\(20\) 0 0
\(21\) −3.18813 + 5.52200i −0.695706 + 1.20500i
\(22\) 1.82241 3.15651i 0.388540 0.672971i
\(23\) 2.34233 + 4.05703i 0.488409 + 0.845950i 0.999911 0.0133324i \(-0.00424395\pi\)
−0.511502 + 0.859282i \(0.670911\pi\)
\(24\) 0.851703 1.47519i 0.173853 0.301123i
\(25\) 0 0
\(26\) −6.03983 −1.18451
\(27\) −5.27785 −1.01572
\(28\) −1.87162 3.24174i −0.353703 0.612631i
\(29\) 3.32241 + 5.75459i 0.616957 + 1.06860i 0.990038 + 0.140802i \(0.0449681\pi\)
−0.373081 + 0.927799i \(0.621699\pi\)
\(30\) 0 0
\(31\) 10.8416 1.94722 0.973608 0.228226i \(-0.0732925\pi\)
0.973608 + 0.228226i \(0.0732925\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −3.10431 + 5.37683i −0.540392 + 0.935986i
\(34\) 2.04920 + 3.54932i 0.351435 + 0.608704i
\(35\) 0 0
\(36\) 0.0492032 0.0852224i 0.00820053 0.0142037i
\(37\) 7.75505 1.27492 0.637461 0.770483i \(-0.279985\pi\)
0.637461 + 0.770483i \(0.279985\pi\)
\(38\) −4.07502 1.54731i −0.661056 0.251007i
\(39\) 10.2883 1.64744
\(40\) 0 0
\(41\) 3.99653 6.92220i 0.624154 1.08107i −0.364550 0.931184i \(-0.618777\pi\)
0.988704 0.149882i \(-0.0478894\pi\)
\(42\) 3.18813 + 5.52200i 0.491939 + 0.852062i
\(43\) −2.19403 + 3.80018i −0.334587 + 0.579521i −0.983405 0.181422i \(-0.941930\pi\)
0.648819 + 0.760943i \(0.275263\pi\)
\(44\) −1.82241 3.15651i −0.274739 0.475863i
\(45\) 0 0
\(46\) 4.68466 0.690715
\(47\) 0.871618 + 1.50969i 0.127139 + 0.220210i 0.922567 0.385837i \(-0.126087\pi\)
−0.795428 + 0.606048i \(0.792754\pi\)
\(48\) −0.851703 1.47519i −0.122933 0.212926i
\(49\) 7.01181 1.00169
\(50\) 0 0
\(51\) −3.49063 6.04594i −0.488785 0.846601i
\(52\) −3.01991 + 5.23065i −0.418787 + 0.725360i
\(53\) −0.871618 1.50969i −0.119726 0.207371i 0.799933 0.600089i \(-0.204868\pi\)
−0.919659 + 0.392718i \(0.871535\pi\)
\(54\) −2.63892 + 4.57075i −0.359112 + 0.622000i
\(55\) 0 0
\(56\) −3.74324 −0.500211
\(57\) 6.94142 + 2.63570i 0.919414 + 0.349107i
\(58\) 6.64483 0.872509
\(59\) 3.67412 6.36376i 0.478329 0.828491i −0.521362 0.853336i \(-0.674576\pi\)
0.999691 + 0.0248448i \(0.00790917\pi\)
\(60\) 0 0
\(61\) −1.15420 1.99914i −0.147781 0.255963i 0.782626 0.622492i \(-0.213880\pi\)
−0.930407 + 0.366528i \(0.880546\pi\)
\(62\) 5.42082 9.38914i 0.688445 1.19242i
\(63\) 0.184179 + 0.319008i 0.0232044 + 0.0401912i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 3.10431 + 5.37683i 0.382115 + 0.661842i
\(67\) −3.37162 5.83981i −0.411909 0.713447i 0.583190 0.812336i \(-0.301804\pi\)
−0.995098 + 0.0988892i \(0.968471\pi\)
\(68\) 4.09841 0.497005
\(69\) −7.97988 −0.960664
\(70\) 0 0
\(71\) 0.994093 1.72182i 0.117977 0.204342i −0.800989 0.598679i \(-0.795692\pi\)
0.918966 + 0.394337i \(0.129026\pi\)
\(72\) −0.0492032 0.0852224i −0.00579865 0.0100436i
\(73\) −4.59494 + 7.95867i −0.537797 + 0.931492i 0.461225 + 0.887283i \(0.347410\pi\)
−0.999022 + 0.0442086i \(0.985923\pi\)
\(74\) 3.87752 6.71607i 0.450753 0.780727i
\(75\) 0 0
\(76\) −3.37752 + 2.75542i −0.387429 + 0.316068i
\(77\) 13.6435 1.55482
\(78\) 5.14414 8.90992i 0.582459 1.00885i
\(79\) −3.07849 + 5.33210i −0.346357 + 0.599909i −0.985599 0.169097i \(-0.945915\pi\)
0.639242 + 0.769006i \(0.279248\pi\)
\(80\) 0 0
\(81\) 4.34755 7.53017i 0.483061 0.836686i
\(82\) −3.99653 6.92220i −0.441343 0.764429i
\(83\) 5.69159 0.624734 0.312367 0.949962i \(-0.398878\pi\)
0.312367 + 0.949962i \(0.398878\pi\)
\(84\) 6.37625 0.695706
\(85\) 0 0
\(86\) 2.19403 + 3.80018i 0.236589 + 0.409783i
\(87\) −11.3188 −1.21351
\(88\) −3.64483 −0.388540
\(89\) 5.53983 + 9.59527i 0.587221 + 1.01710i 0.994595 + 0.103835i \(0.0331113\pi\)
−0.407374 + 0.913261i \(0.633555\pi\)
\(90\) 0 0
\(91\) −11.3043 19.5795i −1.18501 2.05249i
\(92\) 2.34233 4.05703i 0.244205 0.422975i
\(93\) −9.23386 + 15.9935i −0.957507 + 1.65845i
\(94\) 1.74324 0.179801
\(95\) 0 0
\(96\) −1.70341 −0.173853
\(97\) −0.752610 + 1.30356i −0.0764159 + 0.132356i −0.901701 0.432360i \(-0.857681\pi\)
0.825285 + 0.564716i \(0.191014\pi\)
\(98\) 3.50591 6.07241i 0.354150 0.613406i
\(99\) 0.179337 + 0.310621i 0.0180241 + 0.0312186i
\(100\) 0 0
\(101\) 3.91735 + 6.78506i 0.389791 + 0.675138i 0.992421 0.122883i \(-0.0392138\pi\)
−0.602630 + 0.798021i \(0.705880\pi\)
\(102\) −6.98125 −0.691247
\(103\) −13.6036 −1.34041 −0.670203 0.742178i \(-0.733793\pi\)
−0.670203 + 0.742178i \(0.733793\pi\)
\(104\) 3.01991 + 5.23065i 0.296127 + 0.512907i
\(105\) 0 0
\(106\) −1.74324 −0.169318
\(107\) −7.24845 −0.700735 −0.350367 0.936612i \(-0.613943\pi\)
−0.350367 + 0.936612i \(0.613943\pi\)
\(108\) 2.63892 + 4.57075i 0.253930 + 0.439820i
\(109\) −2.24392 + 3.88659i −0.214929 + 0.372268i −0.953251 0.302181i \(-0.902285\pi\)
0.738322 + 0.674449i \(0.235619\pi\)
\(110\) 0 0
\(111\) −6.60500 + 11.4402i −0.626919 + 1.08586i
\(112\) −1.87162 + 3.24174i −0.176851 + 0.306315i
\(113\) 13.2813 1.24940 0.624702 0.780863i \(-0.285220\pi\)
0.624702 + 0.780863i \(0.285220\pi\)
\(114\) 5.75330 4.69360i 0.538846 0.439596i
\(115\) 0 0
\(116\) 3.32241 5.75459i 0.308478 0.534300i
\(117\) 0.297179 0.514729i 0.0274742 0.0475867i
\(118\) −3.67412 6.36376i −0.338230 0.585831i
\(119\) −7.67065 + 13.2860i −0.703167 + 1.21792i
\(120\) 0 0
\(121\) 2.28478 0.207707
\(122\) −2.30841 −0.208993
\(123\) 6.80772 + 11.7913i 0.613831 + 1.06319i
\(124\) −5.42082 9.38914i −0.486804 0.843169i
\(125\) 0 0
\(126\) 0.368358 0.0328160
\(127\) 1.72332 + 2.98488i 0.152920 + 0.264865i 0.932300 0.361687i \(-0.117799\pi\)
−0.779380 + 0.626552i \(0.784466\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −3.73733 6.47324i −0.329053 0.569937i
\(130\) 0 0
\(131\) −8.26315 + 14.3122i −0.721955 + 1.25046i 0.238260 + 0.971201i \(0.423423\pi\)
−0.960215 + 0.279261i \(0.909911\pi\)
\(132\) 6.20863 0.540392
\(133\) −2.61091 16.1061i −0.226394 1.39658i
\(134\) −6.74324 −0.582527
\(135\) 0 0
\(136\) 2.04920 3.54932i 0.175718 0.304352i
\(137\) −11.1560 19.3227i −0.953118 1.65085i −0.738618 0.674124i \(-0.764521\pi\)
−0.214499 0.976724i \(-0.568812\pi\)
\(138\) −3.98994 + 6.91078i −0.339646 + 0.588284i
\(139\) 0.880992 + 1.52592i 0.0747248 + 0.129427i 0.900967 0.433889i \(-0.142859\pi\)
−0.826242 + 0.563316i \(0.809526\pi\)
\(140\) 0 0
\(141\) −2.96944 −0.250072
\(142\) −0.994093 1.72182i −0.0834225 0.144492i
\(143\) −11.0071 19.0648i −0.920458 1.59428i
\(144\) −0.0984064 −0.00820053
\(145\) 0 0
\(146\) 4.59494 + 7.95867i 0.380280 + 0.658664i
\(147\) −5.97198 + 10.3438i −0.492561 + 0.853141i
\(148\) −3.87752 6.71607i −0.318731 0.552057i
\(149\) 1.80713 3.13005i 0.148046 0.256424i −0.782459 0.622702i \(-0.786035\pi\)
0.930505 + 0.366278i \(0.119368\pi\)
\(150\) 0 0
\(151\) −18.1711 −1.47875 −0.739373 0.673296i \(-0.764878\pi\)
−0.739373 + 0.673296i \(0.764878\pi\)
\(152\) 0.697500 + 4.30273i 0.0565747 + 0.348998i
\(153\) −0.403309 −0.0326056
\(154\) 6.82173 11.8156i 0.549710 0.952126i
\(155\) 0 0
\(156\) −5.14414 8.90992i −0.411861 0.713364i
\(157\) −3.89153 + 6.74033i −0.310578 + 0.537937i −0.978488 0.206305i \(-0.933856\pi\)
0.667910 + 0.744242i \(0.267189\pi\)
\(158\) 3.07849 + 5.33210i 0.244912 + 0.424199i
\(159\) 2.96944 0.235492
\(160\) 0 0
\(161\) 8.76789 + 15.1864i 0.691007 + 1.19686i
\(162\) −4.34755 7.53017i −0.341576 0.591626i
\(163\) −5.46539 −0.428082 −0.214041 0.976825i \(-0.568663\pi\)
−0.214041 + 0.976825i \(0.568663\pi\)
\(164\) −7.99307 −0.624154
\(165\) 0 0
\(166\) 2.84580 4.92906i 0.220877 0.382570i
\(167\) −9.19994 15.9348i −0.711913 1.23307i −0.964138 0.265400i \(-0.914496\pi\)
0.252226 0.967668i \(-0.418837\pi\)
\(168\) 3.18813 5.52200i 0.245969 0.426031i
\(169\) −11.7398 + 20.3339i −0.903059 + 1.56414i
\(170\) 0 0
\(171\) 0.332370 0.271151i 0.0254170 0.0207354i
\(172\) 4.38806 0.334587
\(173\) 9.74914 16.8860i 0.741214 1.28382i −0.210729 0.977544i \(-0.567584\pi\)
0.951943 0.306275i \(-0.0990827\pi\)
\(174\) −5.65942 + 9.80241i −0.429040 + 0.743119i
\(175\) 0 0
\(176\) −1.82241 + 3.15651i −0.137370 + 0.237931i
\(177\) 6.25852 + 10.8401i 0.470419 + 0.814789i
\(178\) 11.0797 0.830456
\(179\) −23.5661 −1.76142 −0.880708 0.473660i \(-0.842932\pi\)
−0.880708 + 0.473660i \(0.842932\pi\)
\(180\) 0 0
\(181\) −7.86746 13.6268i −0.584784 1.01288i −0.994902 0.100843i \(-0.967846\pi\)
0.410118 0.912032i \(-0.365487\pi\)
\(182\) −22.6085 −1.67585
\(183\) 3.93215 0.290673
\(184\) −2.34233 4.05703i −0.172679 0.299088i
\(185\) 0 0
\(186\) 9.23386 + 15.9935i 0.677060 + 1.17270i
\(187\) −7.46900 + 12.9367i −0.546187 + 0.946024i
\(188\) 0.871618 1.50969i 0.0635693 0.110105i
\(189\) −19.7562 −1.43705
\(190\) 0 0
\(191\) 6.64483 0.480803 0.240401 0.970674i \(-0.422721\pi\)
0.240401 + 0.970674i \(0.422721\pi\)
\(192\) −0.851703 + 1.47519i −0.0614664 + 0.106463i
\(193\) 3.99931 6.92701i 0.287877 0.498617i −0.685426 0.728142i \(-0.740384\pi\)
0.973303 + 0.229525i \(0.0737173\pi\)
\(194\) 0.752610 + 1.30356i 0.0540342 + 0.0935900i
\(195\) 0 0
\(196\) −3.50591 6.07241i −0.250422 0.433743i
\(197\) −0.481593 −0.0343121 −0.0171560 0.999853i \(-0.505461\pi\)
−0.0171560 + 0.999853i \(0.505461\pi\)
\(198\) 0.358674 0.0254899
\(199\) −11.6793 20.2292i −0.827926 1.43401i −0.899662 0.436587i \(-0.856187\pi\)
0.0717359 0.997424i \(-0.477146\pi\)
\(200\) 0 0
\(201\) 11.4865 0.810193
\(202\) 7.83471 0.551248
\(203\) 12.4366 + 21.5408i 0.872877 + 1.51187i
\(204\) −3.49063 + 6.04594i −0.244393 + 0.423301i
\(205\) 0 0
\(206\) −6.80181 + 11.7811i −0.473905 + 0.820827i
\(207\) −0.230500 + 0.399238i −0.0160209 + 0.0277490i
\(208\) 6.03983 0.418787
\(209\) −2.54227 15.6827i −0.175852 1.08480i
\(210\) 0 0
\(211\) 2.91491 5.04878i 0.200671 0.347572i −0.748074 0.663616i \(-0.769021\pi\)
0.948745 + 0.316043i \(0.102354\pi\)
\(212\) −0.871618 + 1.50969i −0.0598630 + 0.103686i
\(213\) 1.69335 + 2.93296i 0.116026 + 0.200963i
\(214\) −3.62423 + 6.27735i −0.247747 + 0.429111i
\(215\) 0 0
\(216\) 5.27785 0.359112
\(217\) 40.5828 2.75494
\(218\) 2.24392 + 3.88659i 0.151978 + 0.263233i
\(219\) −7.82705 13.5568i −0.528903 0.916087i
\(220\) 0 0
\(221\) 24.7537 1.66511
\(222\) 6.60500 + 11.4402i 0.443299 + 0.767816i
\(223\) −8.36224 + 14.4838i −0.559977 + 0.969909i 0.437520 + 0.899209i \(0.355857\pi\)
−0.997498 + 0.0707005i \(0.977477\pi\)
\(224\) 1.87162 + 3.24174i 0.125053 + 0.216598i
\(225\) 0 0
\(226\) 6.64067 11.5020i 0.441731 0.765101i
\(227\) 4.16186 0.276232 0.138116 0.990416i \(-0.455895\pi\)
0.138116 + 0.990416i \(0.455895\pi\)
\(228\) −1.18813 7.32930i −0.0786856 0.485395i
\(229\) −5.49828 −0.363337 −0.181668 0.983360i \(-0.558150\pi\)
−0.181668 + 0.983360i \(0.558150\pi\)
\(230\) 0 0
\(231\) −11.6202 + 20.1267i −0.764551 + 1.32424i
\(232\) −3.32241 5.75459i −0.218127 0.377807i
\(233\) 6.59738 11.4270i 0.432209 0.748607i −0.564855 0.825190i \(-0.691068\pi\)
0.997063 + 0.0765832i \(0.0244011\pi\)
\(234\) −0.297179 0.514729i −0.0194272 0.0336489i
\(235\) 0 0
\(236\) −7.34824 −0.478329
\(237\) −5.24392 9.08274i −0.340629 0.589987i
\(238\) 7.67065 + 13.2860i 0.497214 + 0.861201i
\(239\) 8.47720 0.548345 0.274172 0.961681i \(-0.411596\pi\)
0.274172 + 0.961681i \(0.411596\pi\)
\(240\) 0 0
\(241\) −10.5146 18.2118i −0.677304 1.17313i −0.975790 0.218711i \(-0.929815\pi\)
0.298485 0.954414i \(-0.403519\pi\)
\(242\) 1.14239 1.97868i 0.0734356 0.127194i
\(243\) −0.511126 0.885296i −0.0327887 0.0567918i
\(244\) −1.15420 + 1.99914i −0.0738903 + 0.127982i
\(245\) 0 0
\(246\) 13.6154 0.868089
\(247\) −20.3997 + 16.6423i −1.29800 + 1.05892i
\(248\) −10.8416 −0.688445
\(249\) −4.84755 + 8.39620i −0.307201 + 0.532088i
\(250\) 0 0
\(251\) −13.6183 23.5876i −0.859581 1.48884i −0.872329 0.488919i \(-0.837391\pi\)
0.0127485 0.999919i \(-0.495942\pi\)
\(252\) 0.184179 0.319008i 0.0116022 0.0200956i
\(253\) 8.53739 + 14.7872i 0.536741 + 0.929663i
\(254\) 3.44664 0.216262
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 8.32705 + 14.4229i 0.519427 + 0.899674i 0.999745 + 0.0225796i \(0.00718792\pi\)
−0.480318 + 0.877094i \(0.659479\pi\)
\(258\) −7.47466 −0.465352
\(259\) 29.0290 1.80377
\(260\) 0 0
\(261\) −0.326947 + 0.566288i −0.0202375 + 0.0350524i
\(262\) 8.26315 + 14.3122i 0.510499 + 0.884210i
\(263\) −0.994093 + 1.72182i −0.0612984 + 0.106172i −0.895046 0.445974i \(-0.852857\pi\)
0.833748 + 0.552146i \(0.186191\pi\)
\(264\) 3.10431 5.37683i 0.191057 0.330921i
\(265\) 0 0
\(266\) −15.2538 5.79196i −0.935269 0.355128i
\(267\) −18.8732 −1.15502
\(268\) −3.37162 + 5.83981i −0.205954 + 0.356723i
\(269\) −3.57224 + 6.18731i −0.217804 + 0.377247i −0.954136 0.299373i \(-0.903223\pi\)
0.736333 + 0.676620i \(0.236556\pi\)
\(270\) 0 0
\(271\) −5.47940 + 9.49060i −0.332850 + 0.576513i −0.983069 0.183234i \(-0.941344\pi\)
0.650220 + 0.759746i \(0.274677\pi\)
\(272\) −2.04920 3.54932i −0.124251 0.215209i
\(273\) 38.5115 2.33082
\(274\) −22.3119 −1.34791
\(275\) 0 0
\(276\) 3.98994 + 6.91078i 0.240166 + 0.415980i
\(277\) −12.2686 −0.737147 −0.368574 0.929599i \(-0.620154\pi\)
−0.368574 + 0.929599i \(0.620154\pi\)
\(278\) 1.76198 0.105677
\(279\) 0.533443 + 0.923951i 0.0319364 + 0.0553155i
\(280\) 0 0
\(281\) 8.53983 + 14.7914i 0.509443 + 0.882382i 0.999940 + 0.0109390i \(0.00348205\pi\)
−0.490497 + 0.871443i \(0.663185\pi\)
\(282\) −1.48472 + 2.57161i −0.0884138 + 0.153137i
\(283\) 15.0064 25.9918i 0.892037 1.54505i 0.0546077 0.998508i \(-0.482609\pi\)
0.837429 0.546546i \(-0.184057\pi\)
\(284\) −1.98819 −0.117977
\(285\) 0 0
\(286\) −22.0141 −1.30172
\(287\) 14.9600 25.9114i 0.883059 1.52950i
\(288\) −0.0492032 + 0.0852224i −0.00289933 + 0.00502178i
\(289\) 0.101533 + 0.175860i 0.00597251 + 0.0103447i
\(290\) 0 0
\(291\) −1.28200 2.22049i −0.0751522 0.130167i
\(292\) 9.18988 0.537797
\(293\) −22.4677 −1.31258 −0.656289 0.754509i \(-0.727875\pi\)
−0.656289 + 0.754509i \(0.727875\pi\)
\(294\) 5.97198 + 10.3438i 0.348293 + 0.603261i
\(295\) 0 0
\(296\) −7.75505 −0.450753
\(297\) −19.2368 −1.11624
\(298\) −1.80713 3.13005i −0.104684 0.181319i
\(299\) 14.1473 24.5038i 0.818158 1.41709i
\(300\) 0 0
\(301\) −8.21278 + 14.2250i −0.473377 + 0.819913i
\(302\) −9.08556 + 15.7367i −0.522816 + 0.905543i
\(303\) −13.3457 −0.766690
\(304\) 4.07502 + 1.54731i 0.233719 + 0.0887445i
\(305\) 0 0
\(306\) −0.201655 + 0.349276i −0.0115278 + 0.0199668i
\(307\) 8.19578 14.1955i 0.467758 0.810181i −0.531563 0.847019i \(-0.678395\pi\)
0.999321 + 0.0368378i \(0.0117285\pi\)
\(308\) −6.82173 11.8156i −0.388704 0.673255i
\(309\) 11.5863 20.0680i 0.659119 1.14163i
\(310\) 0 0
\(311\) −18.0197 −1.02180 −0.510902 0.859639i \(-0.670688\pi\)
−0.510902 + 0.859639i \(0.670688\pi\)
\(312\) −10.2883 −0.582459
\(313\) 9.00522 + 15.5975i 0.509005 + 0.881623i 0.999946 + 0.0104296i \(0.00331990\pi\)
−0.490941 + 0.871193i \(0.663347\pi\)
\(314\) 3.89153 + 6.74033i 0.219612 + 0.380379i
\(315\) 0 0
\(316\) 6.15698 0.346357
\(317\) 11.6277 + 20.1398i 0.653076 + 1.13116i 0.982372 + 0.186935i \(0.0598553\pi\)
−0.329296 + 0.944227i \(0.606811\pi\)
\(318\) 1.48472 2.57161i 0.0832589 0.144209i
\(319\) 12.1096 + 20.9745i 0.678009 + 1.17435i
\(320\) 0 0
\(321\) 6.17353 10.6929i 0.344573 0.596818i
\(322\) 17.5358 0.977231
\(323\) 16.7011 + 6.34152i 0.929274 + 0.352851i
\(324\) −8.69510 −0.483061
\(325\) 0 0
\(326\) −2.73270 + 4.73317i −0.151350 + 0.262146i
\(327\) −3.82231 6.62044i −0.211374 0.366111i
\(328\) −3.99653 + 6.92220i −0.220672 + 0.382214i
\(329\) 3.26267 + 5.65111i 0.179877 + 0.311556i
\(330\) 0 0
\(331\) 7.38319 0.405817 0.202908 0.979198i \(-0.434961\pi\)
0.202908 + 0.979198i \(0.434961\pi\)
\(332\) −2.84580 4.92906i −0.156183 0.270518i
\(333\) 0.381573 + 0.660904i 0.0209101 + 0.0362173i
\(334\) −18.3999 −1.00680
\(335\) 0 0
\(336\) −3.18813 5.52200i −0.173927 0.301250i
\(337\) −15.4400 + 26.7429i −0.841073 + 1.45678i 0.0479153 + 0.998851i \(0.484742\pi\)
−0.888988 + 0.457930i \(0.848591\pi\)
\(338\) 11.7398 + 20.3339i 0.638559 + 1.10602i
\(339\) −11.3118 + 19.5926i −0.614371 + 1.06412i
\(340\) 0 0
\(341\) 39.5159 2.13991
\(342\) −0.0686384 0.423416i −0.00371154 0.0228957i
\(343\) 0.0442191 0.00238761
\(344\) 2.19403 3.80018i 0.118294 0.204892i
\(345\) 0 0
\(346\) −9.74914 16.8860i −0.524117 0.907797i
\(347\) −4.55974 + 7.89771i −0.244780 + 0.423971i −0.962070 0.272804i \(-0.912049\pi\)
0.717290 + 0.696775i \(0.245382\pi\)
\(348\) 5.65942 + 9.80241i 0.303377 + 0.525464i
\(349\) −14.2508 −0.762827 −0.381414 0.924404i \(-0.624563\pi\)
−0.381414 + 0.924404i \(0.624563\pi\)
\(350\) 0 0
\(351\) 15.9386 + 27.6065i 0.850742 + 1.47353i
\(352\) 1.82241 + 3.15651i 0.0971350 + 0.168243i
\(353\) −7.77613 −0.413882 −0.206941 0.978353i \(-0.566351\pi\)
−0.206941 + 0.978353i \(0.566351\pi\)
\(354\) 12.5170 0.665273
\(355\) 0 0
\(356\) 5.53983 9.59527i 0.293610 0.508548i
\(357\) −13.0662 22.6314i −0.691539 1.19778i
\(358\) −11.7831 + 20.4089i −0.622754 + 1.07864i
\(359\) −2.90437 + 5.03052i −0.153287 + 0.265501i −0.932434 0.361340i \(-0.882319\pi\)
0.779147 + 0.626841i \(0.215653\pi\)
\(360\) 0 0
\(361\) −18.0270 + 6.00231i −0.948789 + 0.315911i
\(362\) −15.7349 −0.827009
\(363\) −1.94595 + 3.37049i −0.102136 + 0.176905i
\(364\) −11.3043 + 19.5795i −0.592504 + 1.02625i
\(365\) 0 0
\(366\) 1.96608 3.40535i 0.102769 0.178000i
\(367\) 11.1414 + 19.2974i 0.581574 + 1.00732i 0.995293 + 0.0969115i \(0.0308964\pi\)
−0.413719 + 0.910405i \(0.635770\pi\)
\(368\) −4.68466 −0.244205
\(369\) 0.786568 0.0409471
\(370\) 0 0
\(371\) −3.26267 5.65111i −0.169389 0.293391i
\(372\) 18.4677 0.957507
\(373\) 17.0609 0.883380 0.441690 0.897168i \(-0.354379\pi\)
0.441690 + 0.897168i \(0.354379\pi\)
\(374\) 7.46900 + 12.9367i 0.386213 + 0.668940i
\(375\) 0 0
\(376\) −0.871618 1.50969i −0.0449503 0.0778561i
\(377\) 20.0668 34.7567i 1.03349 1.79006i
\(378\) −9.87811 + 17.1094i −0.508075 + 0.880012i
\(379\) −10.0329 −0.515355 −0.257678 0.966231i \(-0.582957\pi\)
−0.257678 + 0.966231i \(0.582957\pi\)
\(380\) 0 0
\(381\) −5.87103 −0.300782
\(382\) 3.32241 5.75459i 0.169990 0.294430i
\(383\) −0.994093 + 1.72182i −0.0507958 + 0.0879809i −0.890305 0.455364i \(-0.849509\pi\)
0.839510 + 0.543345i \(0.182842\pi\)
\(384\) 0.851703 + 1.47519i 0.0434633 + 0.0752806i
\(385\) 0 0
\(386\) −3.99931 6.92701i −0.203560 0.352576i
\(387\) −0.431814 −0.0219503
\(388\) 1.50522 0.0764159
\(389\) −4.43854 7.68778i −0.225043 0.389786i 0.731289 0.682067i \(-0.238919\pi\)
−0.956332 + 0.292282i \(0.905586\pi\)
\(390\) 0 0
\(391\) −19.1996 −0.970967
\(392\) −7.01181 −0.354150
\(393\) −14.0755 24.3795i −0.710015 1.22978i
\(394\) −0.240797 + 0.417072i −0.0121312 + 0.0210118i
\(395\) 0 0
\(396\) 0.179337 0.310621i 0.00901203 0.0156093i
\(397\) 10.5563 18.2840i 0.529804 0.917648i −0.469591 0.882884i \(-0.655599\pi\)
0.999396 0.0347640i \(-0.0110680\pi\)
\(398\) −23.3587 −1.17086
\(399\) 25.9834 + 9.86606i 1.30080 + 0.493921i
\(400\) 0 0
\(401\) −14.9806 + 25.9471i −0.748094 + 1.29574i 0.200642 + 0.979665i \(0.435697\pi\)
−0.948735 + 0.316072i \(0.897636\pi\)
\(402\) 5.74324 9.94758i 0.286447 0.496140i
\(403\) −32.7408 56.7088i −1.63094 2.82487i
\(404\) 3.91735 6.78506i 0.194896 0.337569i
\(405\) 0 0
\(406\) 24.8732 1.23443
\(407\) 28.2658 1.40109
\(408\) 3.49063 + 6.04594i 0.172812 + 0.299319i
\(409\) 2.09772 + 3.63336i 0.103726 + 0.179658i 0.913217 0.407474i \(-0.133590\pi\)
−0.809491 + 0.587132i \(0.800257\pi\)
\(410\) 0 0
\(411\) 38.0063 1.87471
\(412\) 6.80181 + 11.7811i 0.335101 + 0.580412i
\(413\) 13.7531 23.8210i 0.676745 1.17216i
\(414\) 0.230500 + 0.399238i 0.0113285 + 0.0196215i
\(415\) 0 0
\(416\) 3.01991 5.23065i 0.148063 0.256453i
\(417\) −3.00137 −0.146978
\(418\) −14.8528 5.63969i −0.726473 0.275846i
\(419\) 12.5326 0.612255 0.306128 0.951990i \(-0.400967\pi\)
0.306128 + 0.951990i \(0.400967\pi\)
\(420\) 0 0
\(421\) 13.2883 23.0160i 0.647631 1.12173i −0.336056 0.941842i \(-0.609093\pi\)
0.983687 0.179888i \(-0.0575736\pi\)
\(422\) −2.91491 5.04878i −0.141896 0.245771i
\(423\) −0.0857727 + 0.148563i −0.00417041 + 0.00722337i
\(424\) 0.871618 + 1.50969i 0.0423295 + 0.0733169i
\(425\) 0 0
\(426\) 3.38669 0.164086
\(427\) −4.32045 7.48325i −0.209081 0.362140i
\(428\) 3.62423 + 6.27735i 0.175184 + 0.303427i
\(429\) 37.4990 1.81047
\(430\) 0 0
\(431\) 0.0903049 + 0.156413i 0.00434983 + 0.00753413i 0.868192 0.496228i \(-0.165282\pi\)
−0.863842 + 0.503762i \(0.831949\pi\)
\(432\) 2.63892 4.57075i 0.126965 0.219910i
\(433\) 6.00522 + 10.4013i 0.288592 + 0.499857i 0.973474 0.228798i \(-0.0734794\pi\)
−0.684882 + 0.728654i \(0.740146\pi\)
\(434\) 20.2914 35.1458i 0.974019 1.68705i
\(435\) 0 0
\(436\) 4.48785 0.214929
\(437\) 15.8225 12.9082i 0.756895 0.617483i
\(438\) −15.6541 −0.747982
\(439\) 14.2544 24.6893i 0.680324 1.17835i −0.294559 0.955633i \(-0.595173\pi\)
0.974882 0.222722i \(-0.0714941\pi\)
\(440\) 0 0
\(441\) 0.345004 + 0.597564i 0.0164287 + 0.0284554i
\(442\) 12.3768 21.4373i 0.588706 1.01967i
\(443\) −4.27321 7.40142i −0.203026 0.351652i 0.746476 0.665413i \(-0.231744\pi\)
−0.949502 + 0.313761i \(0.898411\pi\)
\(444\) 13.2100 0.626919
\(445\) 0 0
\(446\) 8.36224 + 14.4838i 0.395964 + 0.685829i
\(447\) 3.07828 + 5.33174i 0.145598 + 0.252183i
\(448\) 3.74324 0.176851
\(449\) −4.24612 −0.200387 −0.100193 0.994968i \(-0.531946\pi\)
−0.100193 + 0.994968i \(0.531946\pi\)
\(450\) 0 0
\(451\) 14.5667 25.2302i 0.685918 1.18805i
\(452\) −6.64067 11.5020i −0.312351 0.541008i
\(453\) 15.4764 26.8059i 0.727145 1.25945i
\(454\) 2.08093 3.60428i 0.0976629 0.169157i
\(455\) 0 0
\(456\) −6.94142 2.63570i −0.325062 0.123428i
\(457\) 18.2204 0.852316 0.426158 0.904649i \(-0.359867\pi\)
0.426158 + 0.904649i \(0.359867\pi\)
\(458\) −2.74914 + 4.76165i −0.128459 + 0.222497i
\(459\) 10.8154 18.7328i 0.504819 0.874371i
\(460\) 0 0
\(461\) −15.0140 + 26.0050i −0.699272 + 1.21117i 0.269447 + 0.963015i \(0.413159\pi\)
−0.968719 + 0.248160i \(0.920174\pi\)
\(462\) 11.6202 + 20.1267i 0.540619 + 0.936380i
\(463\) −10.1656 −0.472434 −0.236217 0.971700i \(-0.575908\pi\)
−0.236217 + 0.971700i \(0.575908\pi\)
\(464\) −6.64483 −0.308478
\(465\) 0 0
\(466\) −6.59738 11.4270i −0.305618 0.529345i
\(467\) −13.6129 −0.629930 −0.314965 0.949103i \(-0.601993\pi\)
−0.314965 + 0.949103i \(0.601993\pi\)
\(468\) −0.594358 −0.0274742
\(469\) −12.6208 21.8598i −0.582773 1.00939i
\(470\) 0 0
\(471\) −6.62886 11.4815i −0.305442 0.529041i
\(472\) −3.67412 + 6.36376i −0.169115 + 0.292916i
\(473\) −7.99687 + 13.8510i −0.367697 + 0.636869i
\(474\) −10.4878 −0.481723
\(475\) 0 0
\(476\) 15.3413 0.703167
\(477\) 0.0857727 0.148563i 0.00392726 0.00680222i
\(478\) 4.23860 7.34147i 0.193869 0.335791i
\(479\) −2.71463 4.70188i −0.124035 0.214835i 0.797320 0.603556i \(-0.206250\pi\)
−0.921355 + 0.388722i \(0.872917\pi\)
\(480\) 0 0
\(481\) −23.4196 40.5639i −1.06784 1.84956i
\(482\) −21.0292 −0.957853
\(483\) −29.8706 −1.35916
\(484\) −1.14239 1.97868i −0.0519268 0.0899399i
\(485\) 0 0
\(486\) −1.02225 −0.0463703
\(487\) −32.5569 −1.47529 −0.737646 0.675188i \(-0.764063\pi\)
−0.737646 + 0.675188i \(0.764063\pi\)
\(488\) 1.15420 + 1.99914i 0.0522483 + 0.0904968i
\(489\) 4.65489 8.06251i 0.210501 0.364599i
\(490\) 0 0
\(491\) −15.3410 + 26.5713i −0.692328 + 1.19915i 0.278746 + 0.960365i \(0.410081\pi\)
−0.971073 + 0.238782i \(0.923252\pi\)
\(492\) 6.80772 11.7913i 0.306916 0.531594i
\(493\) −27.2332 −1.22652
\(494\) 4.21278 + 25.9878i 0.189542 + 1.16924i
\(495\) 0 0
\(496\) −5.42082 + 9.38914i −0.243402 + 0.421585i
\(497\) 3.72113 6.44518i 0.166915 0.289106i
\(498\) 4.84755 + 8.39620i 0.217224 + 0.376243i
\(499\) 4.91213 8.50807i 0.219897 0.380873i −0.734879 0.678198i \(-0.762761\pi\)
0.954776 + 0.297325i \(0.0960944\pi\)
\(500\) 0 0
\(501\) 31.3425 1.40028
\(502\) −27.2366 −1.21563
\(503\) 7.57502 + 13.1203i 0.337754 + 0.585006i 0.984010 0.178114i \(-0.0569996\pi\)
−0.646256 + 0.763121i \(0.723666\pi\)
\(504\) −0.184179 0.319008i −0.00820399 0.0142097i
\(505\) 0 0
\(506\) 17.0748 0.759067
\(507\) −19.9976 34.6369i −0.888124 1.53828i
\(508\) 1.72332 2.98488i 0.0764600 0.132433i
\(509\) 1.12110 + 1.94180i 0.0496919 + 0.0860690i 0.889801 0.456348i \(-0.150843\pi\)
−0.840110 + 0.542417i \(0.817509\pi\)
\(510\) 0 0
\(511\) −17.1999 + 29.7912i −0.760881 + 1.31788i
\(512\) −1.00000 −0.0441942
\(513\) 3.68130 + 22.7091i 0.162533 + 1.00263i
\(514\) 16.6541 0.734581
\(515\) 0 0
\(516\) −3.73733 + 6.47324i −0.164527 + 0.284969i
\(517\) 3.17690 + 5.50255i 0.139720 + 0.242002i
\(518\) 14.5145 25.1398i 0.637730 1.10458i
\(519\) 16.6068 + 28.7637i 0.728956 + 1.26259i
\(520\) 0 0
\(521\) −7.06785 −0.309648 −0.154824 0.987942i \(-0.549481\pi\)
−0.154824 + 0.987942i \(0.549481\pi\)
\(522\) 0.326947 + 0.566288i 0.0143101 + 0.0247858i
\(523\) −17.4970 30.3057i −0.765091 1.32518i −0.940199 0.340627i \(-0.889361\pi\)
0.175108 0.984549i \(-0.443973\pi\)
\(524\) 16.5263 0.721955
\(525\) 0 0
\(526\) 0.994093 + 1.72182i 0.0433445 + 0.0750749i
\(527\) −22.2167 + 38.4805i −0.967776 + 1.67624i
\(528\) −3.10431 5.37683i −0.135098 0.233996i
\(529\) 0.526988 0.912769i 0.0229125 0.0396856i
\(530\) 0 0
\(531\) 0.723113 0.0313804
\(532\) −12.6429 + 10.3142i −0.548138 + 0.447176i
\(533\) −48.2767 −2.09110
\(534\) −9.43658 + 16.3446i −0.408361 + 0.707302i
\(535\) 0 0
\(536\) 3.37162 + 5.83981i 0.145632 + 0.252242i
\(537\) 20.0713 34.7646i 0.866143 1.50020i
\(538\) 3.57224 + 6.18731i 0.154010 + 0.266754i
\(539\) 25.5569 1.10081
\(540\) 0 0
\(541\) 14.4090 + 24.9571i 0.619492 + 1.07299i 0.989579 + 0.143994i \(0.0459946\pi\)
−0.370087 + 0.928997i \(0.620672\pi\)
\(542\) 5.47940 + 9.49060i 0.235360 + 0.407656i
\(543\) 26.8030 1.15023
\(544\) −4.09841 −0.175718
\(545\) 0 0
\(546\) 19.2557 33.3519i 0.824069 1.42733i
\(547\) 16.0375 + 27.7778i 0.685715 + 1.18769i 0.973211 + 0.229912i \(0.0738438\pi\)
−0.287496 + 0.957782i \(0.592823\pi\)
\(548\) −11.1560 + 19.3227i −0.476559 + 0.825424i
\(549\) 0.113581 0.196728i 0.00484752 0.00839615i
\(550\) 0 0
\(551\) 22.4431 18.3093i 0.956107 0.780002i
\(552\) 7.97988 0.339646
\(553\) −11.5235 + 19.9593i −0.490030 + 0.848757i
\(554\) −6.13429 + 10.6249i −0.260621 + 0.451409i
\(555\) 0 0
\(556\) 0.880992 1.52592i 0.0373624 0.0647135i
\(557\) −5.18813 8.98610i −0.219828 0.380753i 0.734927 0.678146i \(-0.237216\pi\)
−0.954755 + 0.297393i \(0.903883\pi\)
\(558\) 1.06689 0.0451649
\(559\) 26.5032 1.12096
\(560\) 0 0
\(561\) −12.7227 22.0364i −0.537154 0.930379i
\(562\) 17.0797 0.720462
\(563\) 8.44664 0.355984 0.177992 0.984032i \(-0.443040\pi\)
0.177992 + 0.984032i \(0.443040\pi\)
\(564\) 1.48472 + 2.57161i 0.0625180 + 0.108284i
\(565\) 0 0
\(566\) −15.0064 25.9918i −0.630765 1.09252i
\(567\) 16.2739 28.1872i 0.683440 1.18375i
\(568\) −0.994093 + 1.72182i −0.0417112 + 0.0722460i
\(569\) 1.80181 0.0755359 0.0377680 0.999287i \(-0.487975\pi\)
0.0377680 + 0.999287i \(0.487975\pi\)
\(570\) 0 0
\(571\) 2.70574 0.113232 0.0566158 0.998396i \(-0.481969\pi\)
0.0566158 + 0.998396i \(0.481969\pi\)
\(572\) −11.0071 + 19.0648i −0.460229 + 0.797140i
\(573\) −5.65942 + 9.80241i −0.236426 + 0.409501i
\(574\) −14.9600 25.9114i −0.624417 1.08152i
\(575\) 0 0
\(576\) 0.0492032 + 0.0852224i 0.00205013 + 0.00355093i
\(577\) 6.61544 0.275404 0.137702 0.990474i \(-0.456028\pi\)
0.137702 + 0.990474i \(0.456028\pi\)
\(578\) 0.203065 0.00844640
\(579\) 6.81246 + 11.7995i 0.283116 + 0.490371i
\(580\) 0 0
\(581\) 21.3050 0.883879
\(582\) −2.56400 −0.106281
\(583\) −3.17690 5.50255i −0.131574 0.227892i
\(584\) 4.59494 7.95867i 0.190140 0.329332i
\(585\) 0 0
\(586\) −11.2339 + 19.4576i −0.464067 + 0.803787i
\(587\) −7.21463 + 12.4961i −0.297780 + 0.515770i −0.975628 0.219432i \(-0.929579\pi\)
0.677848 + 0.735202i \(0.262913\pi\)
\(588\) 11.9440 0.492561
\(589\) −7.56204 46.6487i −0.311589 1.92212i
\(590\) 0 0
\(591\) 0.410174 0.710443i 0.0168723 0.0292237i
\(592\) −3.87752 + 6.71607i −0.159365 + 0.276029i
\(593\) −10.3722 17.9652i −0.425935 0.737742i 0.570572 0.821248i \(-0.306722\pi\)
−0.996507 + 0.0835060i \(0.973388\pi\)
\(594\) −9.61842 + 16.6596i −0.394649 + 0.683552i
\(595\) 0 0
\(596\) −3.61427 −0.148046
\(597\) 39.7893 1.62847
\(598\) −14.1473 24.5038i −0.578525 1.00203i
\(599\) 9.41389 + 16.3053i 0.384641 + 0.666218i 0.991719 0.128424i \(-0.0409919\pi\)
−0.607078 + 0.794642i \(0.707659\pi\)
\(600\) 0 0
\(601\) −23.0999 −0.942263 −0.471131 0.882063i \(-0.656154\pi\)
−0.471131 + 0.882063i \(0.656154\pi\)
\(602\) 8.21278 + 14.2250i 0.334728 + 0.579766i
\(603\) 0.331789 0.574675i 0.0135115 0.0234026i
\(604\) 9.08556 + 15.7367i 0.369686 + 0.640316i
\(605\) 0 0
\(606\) −6.67285 + 11.5577i −0.271066 + 0.469500i
\(607\) −28.6025 −1.16094 −0.580470 0.814281i \(-0.697131\pi\)
−0.580470 + 0.814281i \(0.697131\pi\)
\(608\) 3.37752 2.75542i 0.136977 0.111747i
\(609\) −42.3691 −1.71688
\(610\) 0 0
\(611\) 5.26442 9.11825i 0.212976 0.368885i
\(612\) 0.201655 + 0.349276i 0.00815141 + 0.0141186i
\(613\) 3.72507 6.45202i 0.150454 0.260594i −0.780940 0.624606i \(-0.785260\pi\)
0.931395 + 0.364011i \(0.118593\pi\)
\(614\) −8.19578 14.1955i −0.330755 0.572884i
\(615\) 0 0
\(616\) −13.6435 −0.549710
\(617\) 15.6711 + 27.1432i 0.630896 + 1.09274i 0.987369 + 0.158438i \(0.0506459\pi\)
−0.356473 + 0.934306i \(0.616021\pi\)
\(618\) −11.5863 20.0680i −0.466067 0.807252i
\(619\) 1.60012 0.0643143 0.0321572 0.999483i \(-0.489762\pi\)
0.0321572 + 0.999483i \(0.489762\pi\)
\(620\) 0 0
\(621\) −12.3625 21.4124i −0.496088 0.859250i
\(622\) −9.00985 + 15.6055i −0.361262 + 0.625724i
\(623\) 20.7369 + 35.9173i 0.830806 + 1.43900i
\(624\) −5.14414 + 8.90992i −0.205930 + 0.356682i
\(625\) 0 0
\(626\) 18.0104 0.719842
\(627\) 25.3003 + 9.60669i 1.01040 + 0.383654i
\(628\) 7.78306 0.310578
\(629\) −15.8917 + 27.5252i −0.633642 + 1.09750i
\(630\) 0 0
\(631\) 6.44386 + 11.1611i 0.256526 + 0.444316i 0.965309 0.261111i \(-0.0840887\pi\)
−0.708783 + 0.705427i \(0.750755\pi\)
\(632\) 3.07849 5.33210i 0.122456 0.212100i
\(633\) 4.96528 + 8.60012i 0.197352 + 0.341824i
\(634\) 23.2554 0.923590
\(635\) 0 0
\(636\) −1.48472 2.57161i −0.0588730 0.101971i
\(637\) −21.1751 36.6763i −0.838987 1.45317i
\(638\) 24.2193 0.958850
\(639\) 0.195650 0.00773980
\(640\) 0 0
\(641\) 13.9086 24.0903i 0.549355 0.951511i −0.448964 0.893550i \(-0.648207\pi\)
0.998319 0.0579612i \(-0.0184600\pi\)
\(642\) −6.17353 10.6929i −0.243650 0.422014i
\(643\) 8.50292 14.7275i 0.335322 0.580795i −0.648224 0.761449i \(-0.724488\pi\)
0.983547 + 0.180654i \(0.0578214\pi\)
\(644\) 8.76789 15.1864i 0.345503 0.598429i
\(645\) 0 0
\(646\) 13.8425 11.2928i 0.544625 0.444310i
\(647\) 42.3379 1.66447 0.832237 0.554420i \(-0.187060\pi\)
0.832237 + 0.554420i \(0.187060\pi\)
\(648\) −4.34755 + 7.53017i −0.170788 + 0.295813i
\(649\) 13.3915 23.1948i 0.525664 0.910476i
\(650\) 0 0
\(651\) −34.5645 + 59.8675i −1.35469 + 2.34639i
\(652\) 2.73270 + 4.73317i 0.107021 + 0.185365i
\(653\) 48.6365 1.90329 0.951647 0.307194i \(-0.0993899\pi\)
0.951647 + 0.307194i \(0.0993899\pi\)
\(654\) −7.64463 −0.298929
\(655\) 0 0
\(656\) 3.99653 + 6.92220i 0.156038 + 0.270266i
\(657\) −0.904342 −0.0352818
\(658\) 6.52534 0.254384
\(659\) −5.47593 9.48459i −0.213312 0.369467i 0.739437 0.673226i \(-0.235092\pi\)
−0.952749 + 0.303758i \(0.901758\pi\)
\(660\) 0 0
\(661\) 12.3214 + 21.3413i 0.479246 + 0.830079i 0.999717 0.0238007i \(-0.00757670\pi\)
−0.520470 + 0.853880i \(0.674243\pi\)
\(662\) 3.69159 6.39403i 0.143478 0.248511i
\(663\) −21.0828 + 36.5165i −0.818788 + 1.41818i
\(664\) −5.69159 −0.220877
\(665\) 0 0
\(666\) 0.763146 0.0295713
\(667\) −15.5644 + 26.9583i −0.602655 + 1.04383i
\(668\) −9.19994 + 15.9348i −0.355956 + 0.616534i
\(669\) −14.2443 24.6719i −0.550716 0.953869i
\(670\) 0 0
\(671\) −4.20687 7.28652i −0.162405 0.281293i
\(672\) −6.37625 −0.245969
\(673\) −5.18012 −0.199679 −0.0998395 0.995004i \(-0.531833\pi\)
−0.0998395 + 0.995004i \(0.531833\pi\)
\(674\) 15.4400 + 26.7429i 0.594728 + 1.03010i
\(675\) 0 0
\(676\) 23.4795 0.903059
\(677\) 45.4548 1.74697 0.873485 0.486851i \(-0.161854\pi\)
0.873485 + 0.486851i \(0.161854\pi\)
\(678\) 11.3118 + 19.5926i 0.434426 + 0.752448i
\(679\) −2.81720 + 4.87953i −0.108114 + 0.187259i
\(680\) 0 0
\(681\) −3.54467 + 6.13955i −0.135832 + 0.235268i
\(682\) 19.7580 34.2218i 0.756572 1.31042i
\(683\) −3.24495 −0.124165 −0.0620823 0.998071i \(-0.519774\pi\)
−0.0620823 + 0.998071i \(0.519774\pi\)
\(684\) −0.401008 0.152265i −0.0153329 0.00582201i
\(685\) 0 0
\(686\) 0.0221096 0.0382949i 0.000844147 0.00146211i
\(687\) 4.68291 8.11103i 0.178664 0.309455i
\(688\) −2.19403 3.80018i −0.0836467 0.144880i
\(689\) −5.26442 + 9.11825i −0.200559 + 0.347378i
\(690\) 0 0
\(691\) 44.0806 1.67691 0.838453 0.544974i \(-0.183461\pi\)
0.838453 + 0.544974i \(0.183461\pi\)
\(692\) −19.4983 −0.741214
\(693\) 0.671301 + 1.16273i 0.0255006 + 0.0441684i
\(694\) 4.55974 + 7.89771i 0.173086 + 0.299793i
\(695\) 0 0
\(696\) 11.3188 0.429040
\(697\) 16.3794 + 28.3700i 0.620415 + 1.07459i
\(698\) −7.12539 + 12.3415i −0.269700 + 0.467134i
\(699\) 11.2380 + 19.4648i 0.425061 + 0.736227i
\(700\) 0 0
\(701\) −25.7667 + 44.6292i −0.973193 + 1.68562i −0.287420 + 0.957805i \(0.592797\pi\)
−0.685773 + 0.727815i \(0.740536\pi\)
\(702\) 31.8773 1.20313
\(703\) −5.40915 33.3679i −0.204010 1.25849i
\(704\) 3.64483 0.137370
\(705\) 0 0
\(706\) −3.88806 + 6.73433i −0.146329 + 0.253450i
\(707\) 14.6636 + 25.3981i 0.551481 + 0.955192i
\(708\) 6.25852 10.8401i 0.235209 0.407395i
\(709\) −4.42556 7.66530i −0.166205 0.287876i 0.770877 0.636984i \(-0.219818\pi\)
−0.937083 + 0.349107i \(0.886485\pi\)
\(710\) 0 0
\(711\) −0.605886 −0.0227225
\(712\) −5.53983 9.59527i −0.207614 0.359598i
\(713\) 25.3947 + 43.9849i 0.951039 + 1.64725i
\(714\) −26.1325 −0.977983
\(715\) 0 0
\(716\) 11.7831 + 20.4089i 0.440354 + 0.762715i
\(717\) −7.22006 + 12.5055i −0.269638 + 0.467027i
\(718\) 2.90437 + 5.03052i 0.108390 + 0.187737i
\(719\) −23.5785 + 40.8392i −0.879331 + 1.52305i −0.0272540 + 0.999629i \(0.508676\pi\)
−0.852077 + 0.523417i \(0.824657\pi\)
\(720\) 0 0
\(721\) −50.9216 −1.89642
\(722\) −3.81534 + 18.6130i −0.141992 + 0.692704i
\(723\) 35.8213 1.33221
\(724\) −7.86746 + 13.6268i −0.292392 + 0.506438i
\(725\) 0 0
\(726\) 1.94595 + 3.37049i 0.0722212 + 0.125091i
\(727\) 6.52177 11.2960i 0.241879 0.418947i −0.719371 0.694627i \(-0.755570\pi\)
0.961250 + 0.275680i \(0.0889030\pi\)
\(728\) 11.3043 + 19.5795i 0.418963 + 0.725666i
\(729\) 27.8266 1.03061
\(730\) 0 0
\(731\) −8.99204 15.5747i −0.332582 0.576050i
\(732\) −1.96608 3.40535i −0.0726683 0.125865i
\(733\) −13.9861 −0.516590 −0.258295 0.966066i \(-0.583161\pi\)
−0.258295 + 0.966066i \(0.583161\pi\)
\(734\) 22.2827 0.822470
\(735\) 0 0
\(736\) −2.34233 + 4.05703i −0.0863394 + 0.149544i
\(737\) −12.2890 21.2851i −0.452670 0.784048i
\(738\) 0.393284 0.681188i 0.0144770 0.0250749i
\(739\) −0.534508 + 0.925795i −0.0196622 + 0.0340559i −0.875689 0.482875i \(-0.839592\pi\)
0.856027 + 0.516931i \(0.172926\pi\)
\(740\) 0 0
\(741\) −7.17608 44.2677i −0.263620 1.62622i
\(742\) −6.52534 −0.239553
\(743\) −5.00591 + 8.67048i −0.183649 + 0.318089i −0.943120 0.332451i \(-0.892124\pi\)
0.759472 + 0.650541i \(0.225458\pi\)
\(744\) 9.23386 15.9935i 0.338530 0.586351i
\(745\) 0 0
\(746\) 8.53046 14.7752i 0.312322 0.540958i
\(747\) 0.280045 + 0.485051i 0.0102463 + 0.0177471i
\(748\) 14.9380 0.546187
\(749\) −27.1327 −0.991406
\(750\) 0 0
\(751\) −17.3070 29.9767i −0.631543 1.09386i −0.987236 0.159261i \(-0.949089\pi\)
0.355694 0.934603i \(-0.384245\pi\)
\(752\) −1.74324 −0.0635693
\(753\) 46.3951 1.69073
\(754\) −20.0668 34.7567i −0.730790 1.26577i
\(755\) 0 0
\(756\) 9.87811 + 17.1094i 0.359263 + 0.622262i
\(757\) 1.67642 2.90364i 0.0609305 0.105535i −0.833951 0.551838i \(-0.813927\pi\)
0.894882 + 0.446304i \(0.147260\pi\)
\(758\) −5.01645 + 8.68874i −0.182206 + 0.315589i
\(759\) −29.0853 −1.05573
\(760\) 0 0
\(761\) 27.5087 0.997190 0.498595 0.866835i \(-0.333849\pi\)
0.498595 + 0.866835i \(0.333849\pi\)
\(762\) −2.93552 + 5.08446i −0.106343 + 0.184191i
\(763\) −8.39953 + 14.5484i −0.304083 + 0.526688i
\(764\) −3.32241 5.75459i −0.120201 0.208194i
\(765\) 0 0
\(766\) 0.994093 + 1.72182i 0.0359181 + 0.0622119i
\(767\) −44.3821 −1.60254
\(768\) 1.70341 0.0614664
\(769\) 17.1306 + 29.6711i 0.617746 + 1.06997i 0.989896 + 0.141795i \(0.0452872\pi\)
−0.372150 + 0.928172i \(0.621379\pi\)
\(770\) 0 0
\(771\) −28.3687 −1.02167
\(772\) −7.99863 −0.287877
\(773\) −5.98184 10.3608i −0.215152 0.372654i 0.738168 0.674617i \(-0.235691\pi\)
−0.953320 + 0.301963i \(0.902358\pi\)
\(774\) −0.215907 + 0.373961i −0.00776061 + 0.0134418i
\(775\) 0 0
\(776\) 0.752610 1.30356i 0.0270171 0.0467950i
\(777\) −24.7241 + 42.8233i −0.886971 + 1.53628i
\(778\) −8.87708 −0.318259
\(779\) −32.5719 12.3678i −1.16701 0.443121i
\(780\) 0 0
\(781\) 3.62330 6.27574i 0.129652 0.224564i
\(782\) −9.59982 + 16.6274i −0.343289 + 0.594594i
\(783\) −17.5352 30.3718i −0.626657 1.08540i
\(784\) −3.50591 + 6.07241i −0.125211 + 0.216872i
\(785\) 0 0