Properties

Label 950.2.a.k.1.3
Level $950$
Weight $2$
Character 950.1
Self dual yes
Analytic conductor $7.586$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [950,2,Mod(1,950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("950.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 950.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.58578819202\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.19869\) of defining polynomial
Character \(\chi\) \(=\) 950.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +3.03293 q^{3} +1.00000 q^{4} -3.03293 q^{6} -2.46980 q^{7} -1.00000 q^{8} +6.19869 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +3.03293 q^{3} +1.00000 q^{4} -3.03293 q^{6} -2.46980 q^{7} -1.00000 q^{8} +6.19869 q^{9} +0.728896 q^{11} +3.03293 q^{12} +6.23163 q^{13} +2.46980 q^{14} +1.00000 q^{16} -0.563139 q^{17} -6.19869 q^{18} -1.00000 q^{19} -7.49073 q^{21} -0.728896 q^{22} -4.63555 q^{23} -3.03293 q^{24} -6.23163 q^{26} +9.70142 q^{27} -2.46980 q^{28} +10.2316 q^{29} +6.06587 q^{31} -1.00000 q^{32} +2.21069 q^{33} +0.563139 q^{34} +6.19869 q^{36} +5.72890 q^{37} +1.00000 q^{38} +18.9001 q^{39} +4.79476 q^{41} +7.49073 q^{42} -8.06587 q^{43} +0.728896 q^{44} +4.63555 q^{46} -8.12628 q^{47} +3.03293 q^{48} -0.900112 q^{49} -1.70796 q^{51} +6.23163 q^{52} +1.53020 q^{53} -9.70142 q^{54} +2.46980 q^{56} -3.03293 q^{57} -10.2316 q^{58} -5.76183 q^{59} +10.9396 q^{61} -6.06587 q^{62} -15.3095 q^{63} +1.00000 q^{64} -2.21069 q^{66} -12.9330 q^{67} -0.563139 q^{68} -14.0593 q^{69} -4.39738 q^{71} -6.19869 q^{72} +4.09334 q^{73} -5.72890 q^{74} -1.00000 q^{76} -1.80022 q^{77} -18.9001 q^{78} +15.3370 q^{79} +10.8277 q^{81} -4.79476 q^{82} -7.85517 q^{83} -7.49073 q^{84} +8.06587 q^{86} +31.0318 q^{87} -0.728896 q^{88} -10.0000 q^{89} -15.3908 q^{91} -4.63555 q^{92} +18.3974 q^{93} +8.12628 q^{94} -3.03293 q^{96} -11.0055 q^{97} +0.900112 q^{98} +4.51820 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 2 q^{3} + 3 q^{4} + 2 q^{6} - 2 q^{7} - 3 q^{8} + 13 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{2} - 2 q^{3} + 3 q^{4} + 2 q^{6} - 2 q^{7} - 3 q^{8} + 13 q^{9} + 2 q^{11} - 2 q^{12} + 2 q^{13} + 2 q^{14} + 3 q^{16} + 4 q^{17} - 13 q^{18} - 3 q^{19} - 11 q^{21} - 2 q^{22} - 14 q^{23} + 2 q^{24} - 2 q^{26} + 7 q^{27} - 2 q^{28} + 14 q^{29} - 4 q^{31} - 3 q^{32} - 4 q^{33} - 4 q^{34} + 13 q^{36} + 17 q^{37} + 3 q^{38} + 29 q^{39} - 8 q^{41} + 11 q^{42} - 2 q^{43} + 2 q^{44} + 14 q^{46} - 13 q^{47} - 2 q^{48} + 25 q^{49} - 11 q^{51} + 2 q^{52} + 10 q^{53} - 7 q^{54} + 2 q^{56} + 2 q^{57} - 14 q^{58} - 6 q^{59} + 22 q^{61} + 4 q^{62} - 2 q^{63} + 3 q^{64} + 4 q^{66} + 4 q^{68} + 8 q^{69} - 2 q^{71} - 13 q^{72} + 12 q^{73} - 17 q^{74} - 3 q^{76} + 50 q^{77} - 29 q^{78} + 24 q^{79} - q^{81} + 8 q^{82} - 12 q^{83} - 11 q^{84} + 2 q^{86} + 21 q^{87} - 2 q^{88} - 30 q^{89} - 7 q^{91} - 14 q^{92} + 44 q^{93} + 13 q^{94} + 2 q^{96} - 25 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 3.03293 1.75107 0.875533 0.483159i \(-0.160511\pi\)
0.875533 + 0.483159i \(0.160511\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −3.03293 −1.23819
\(7\) −2.46980 −0.933495 −0.466747 0.884391i \(-0.654574\pi\)
−0.466747 + 0.884391i \(0.654574\pi\)
\(8\) −1.00000 −0.353553
\(9\) 6.19869 2.06623
\(10\) 0 0
\(11\) 0.728896 0.219770 0.109885 0.993944i \(-0.464952\pi\)
0.109885 + 0.993944i \(0.464952\pi\)
\(12\) 3.03293 0.875533
\(13\) 6.23163 1.72834 0.864171 0.503198i \(-0.167843\pi\)
0.864171 + 0.503198i \(0.167843\pi\)
\(14\) 2.46980 0.660081
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.563139 −0.136581 −0.0682907 0.997665i \(-0.521755\pi\)
−0.0682907 + 0.997665i \(0.521755\pi\)
\(18\) −6.19869 −1.46105
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −7.49073 −1.63461
\(22\) −0.728896 −0.155401
\(23\) −4.63555 −0.966579 −0.483290 0.875460i \(-0.660558\pi\)
−0.483290 + 0.875460i \(0.660558\pi\)
\(24\) −3.03293 −0.619095
\(25\) 0 0
\(26\) −6.23163 −1.22212
\(27\) 9.70142 1.86704
\(28\) −2.46980 −0.466747
\(29\) 10.2316 1.89997 0.949983 0.312303i \(-0.101100\pi\)
0.949983 + 0.312303i \(0.101100\pi\)
\(30\) 0 0
\(31\) 6.06587 1.08946 0.544731 0.838611i \(-0.316632\pi\)
0.544731 + 0.838611i \(0.316632\pi\)
\(32\) −1.00000 −0.176777
\(33\) 2.21069 0.384832
\(34\) 0.563139 0.0965776
\(35\) 0 0
\(36\) 6.19869 1.03312
\(37\) 5.72890 0.941825 0.470912 0.882180i \(-0.343925\pi\)
0.470912 + 0.882180i \(0.343925\pi\)
\(38\) 1.00000 0.162221
\(39\) 18.9001 3.02644
\(40\) 0 0
\(41\) 4.79476 0.748816 0.374408 0.927264i \(-0.377846\pi\)
0.374408 + 0.927264i \(0.377846\pi\)
\(42\) 7.49073 1.15584
\(43\) −8.06587 −1.23003 −0.615017 0.788514i \(-0.710851\pi\)
−0.615017 + 0.788514i \(0.710851\pi\)
\(44\) 0.728896 0.109885
\(45\) 0 0
\(46\) 4.63555 0.683475
\(47\) −8.12628 −1.18534 −0.592670 0.805446i \(-0.701926\pi\)
−0.592670 + 0.805446i \(0.701926\pi\)
\(48\) 3.03293 0.437766
\(49\) −0.900112 −0.128587
\(50\) 0 0
\(51\) −1.70796 −0.239163
\(52\) 6.23163 0.864171
\(53\) 1.53020 0.210190 0.105095 0.994462i \(-0.466485\pi\)
0.105095 + 0.994462i \(0.466485\pi\)
\(54\) −9.70142 −1.32020
\(55\) 0 0
\(56\) 2.46980 0.330040
\(57\) −3.03293 −0.401722
\(58\) −10.2316 −1.34348
\(59\) −5.76183 −0.750126 −0.375063 0.926999i \(-0.622379\pi\)
−0.375063 + 0.926999i \(0.622379\pi\)
\(60\) 0 0
\(61\) 10.9396 1.40067 0.700336 0.713814i \(-0.253034\pi\)
0.700336 + 0.713814i \(0.253034\pi\)
\(62\) −6.06587 −0.770366
\(63\) −15.3095 −1.92882
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −2.21069 −0.272118
\(67\) −12.9330 −1.58002 −0.790012 0.613092i \(-0.789926\pi\)
−0.790012 + 0.613092i \(0.789926\pi\)
\(68\) −0.563139 −0.0682907
\(69\) −14.0593 −1.69254
\(70\) 0 0
\(71\) −4.39738 −0.521873 −0.260937 0.965356i \(-0.584031\pi\)
−0.260937 + 0.965356i \(0.584031\pi\)
\(72\) −6.19869 −0.730523
\(73\) 4.09334 0.479090 0.239545 0.970885i \(-0.423002\pi\)
0.239545 + 0.970885i \(0.423002\pi\)
\(74\) −5.72890 −0.665971
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) −1.80022 −0.205155
\(78\) −18.9001 −2.14002
\(79\) 15.3370 1.72554 0.862772 0.505593i \(-0.168726\pi\)
0.862772 + 0.505593i \(0.168726\pi\)
\(80\) 0 0
\(81\) 10.8277 1.20308
\(82\) −4.79476 −0.529493
\(83\) −7.85517 −0.862217 −0.431109 0.902300i \(-0.641877\pi\)
−0.431109 + 0.902300i \(0.641877\pi\)
\(84\) −7.49073 −0.817305
\(85\) 0 0
\(86\) 8.06587 0.869765
\(87\) 31.0318 3.32696
\(88\) −0.728896 −0.0777006
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −15.3908 −1.61340
\(92\) −4.63555 −0.483290
\(93\) 18.3974 1.90772
\(94\) 8.12628 0.838162
\(95\) 0 0
\(96\) −3.03293 −0.309548
\(97\) −11.0055 −1.11744 −0.558718 0.829358i \(-0.688706\pi\)
−0.558718 + 0.829358i \(0.688706\pi\)
\(98\) 0.900112 0.0909250
\(99\) 4.51820 0.454096
\(100\) 0 0
\(101\) −9.73436 −0.968605 −0.484302 0.874901i \(-0.660926\pi\)
−0.484302 + 0.874901i \(0.660926\pi\)
\(102\) 1.70796 0.169114
\(103\) 8.33151 0.820928 0.410464 0.911877i \(-0.365367\pi\)
0.410464 + 0.911877i \(0.365367\pi\)
\(104\) −6.23163 −0.611061
\(105\) 0 0
\(106\) −1.53020 −0.148627
\(107\) 15.0264 1.45266 0.726328 0.687348i \(-0.241225\pi\)
0.726328 + 0.687348i \(0.241225\pi\)
\(108\) 9.70142 0.933520
\(109\) −13.6619 −1.30858 −0.654288 0.756245i \(-0.727032\pi\)
−0.654288 + 0.756245i \(0.727032\pi\)
\(110\) 0 0
\(111\) 17.3754 1.64920
\(112\) −2.46980 −0.233374
\(113\) −1.20524 −0.113379 −0.0566895 0.998392i \(-0.518055\pi\)
−0.0566895 + 0.998392i \(0.518055\pi\)
\(114\) 3.03293 0.284060
\(115\) 0 0
\(116\) 10.2316 0.949983
\(117\) 38.6279 3.57115
\(118\) 5.76183 0.530419
\(119\) 1.39084 0.127498
\(120\) 0 0
\(121\) −10.4687 −0.951701
\(122\) −10.9396 −0.990424
\(123\) 14.5422 1.31123
\(124\) 6.06587 0.544731
\(125\) 0 0
\(126\) 15.3095 1.36388
\(127\) −9.52366 −0.845088 −0.422544 0.906342i \(-0.638863\pi\)
−0.422544 + 0.906342i \(0.638863\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −24.4633 −2.15387
\(130\) 0 0
\(131\) −17.4028 −1.52049 −0.760247 0.649635i \(-0.774922\pi\)
−0.760247 + 0.649635i \(0.774922\pi\)
\(132\) 2.21069 0.192416
\(133\) 2.46980 0.214158
\(134\) 12.9330 1.11725
\(135\) 0 0
\(136\) 0.563139 0.0482888
\(137\) −2.25910 −0.193008 −0.0965040 0.995333i \(-0.530766\pi\)
−0.0965040 + 0.995333i \(0.530766\pi\)
\(138\) 14.0593 1.19681
\(139\) 16.8606 1.43010 0.715050 0.699073i \(-0.246404\pi\)
0.715050 + 0.699073i \(0.246404\pi\)
\(140\) 0 0
\(141\) −24.6465 −2.07561
\(142\) 4.39738 0.369020
\(143\) 4.54221 0.379838
\(144\) 6.19869 0.516558
\(145\) 0 0
\(146\) −4.09334 −0.338768
\(147\) −2.72998 −0.225165
\(148\) 5.72890 0.470912
\(149\) −13.0055 −1.06545 −0.532724 0.846289i \(-0.678832\pi\)
−0.532724 + 0.846289i \(0.678832\pi\)
\(150\) 0 0
\(151\) 17.5895 1.43142 0.715708 0.698400i \(-0.246104\pi\)
0.715708 + 0.698400i \(0.246104\pi\)
\(152\) 1.00000 0.0811107
\(153\) −3.49073 −0.282209
\(154\) 1.80022 0.145066
\(155\) 0 0
\(156\) 18.9001 1.51322
\(157\) −9.52366 −0.760071 −0.380035 0.924972i \(-0.624088\pi\)
−0.380035 + 0.924972i \(0.624088\pi\)
\(158\) −15.3370 −1.22014
\(159\) 4.64101 0.368056
\(160\) 0 0
\(161\) 11.4489 0.902297
\(162\) −10.8277 −0.850704
\(163\) −13.1921 −1.03329 −0.516644 0.856200i \(-0.672819\pi\)
−0.516644 + 0.856200i \(0.672819\pi\)
\(164\) 4.79476 0.374408
\(165\) 0 0
\(166\) 7.85517 0.609680
\(167\) −1.81331 −0.140318 −0.0701591 0.997536i \(-0.522351\pi\)
−0.0701591 + 0.997536i \(0.522351\pi\)
\(168\) 7.49073 0.577922
\(169\) 25.8332 1.98717
\(170\) 0 0
\(171\) −6.19869 −0.474026
\(172\) −8.06587 −0.615017
\(173\) 12.5237 0.952156 0.476078 0.879403i \(-0.342058\pi\)
0.476078 + 0.879403i \(0.342058\pi\)
\(174\) −31.0318 −2.35252
\(175\) 0 0
\(176\) 0.728896 0.0549426
\(177\) −17.4753 −1.31352
\(178\) 10.0000 0.749532
\(179\) 1.39738 0.104445 0.0522226 0.998635i \(-0.483369\pi\)
0.0522226 + 0.998635i \(0.483369\pi\)
\(180\) 0 0
\(181\) 5.72890 0.425825 0.212913 0.977071i \(-0.431705\pi\)
0.212913 + 0.977071i \(0.431705\pi\)
\(182\) 15.3908 1.14084
\(183\) 33.1791 2.45267
\(184\) 4.63555 0.341737
\(185\) 0 0
\(186\) −18.3974 −1.34896
\(187\) −0.410470 −0.0300165
\(188\) −8.12628 −0.592670
\(189\) −23.9605 −1.74287
\(190\) 0 0
\(191\) −27.0198 −1.95509 −0.977544 0.210733i \(-0.932415\pi\)
−0.977544 + 0.210733i \(0.932415\pi\)
\(192\) 3.03293 0.218883
\(193\) 23.0713 1.66071 0.830355 0.557234i \(-0.188138\pi\)
0.830355 + 0.557234i \(0.188138\pi\)
\(194\) 11.0055 0.790146
\(195\) 0 0
\(196\) −0.900112 −0.0642937
\(197\) −0.794765 −0.0566247 −0.0283123 0.999599i \(-0.509013\pi\)
−0.0283123 + 0.999599i \(0.509013\pi\)
\(198\) −4.51820 −0.321095
\(199\) 8.07241 0.572238 0.286119 0.958194i \(-0.407635\pi\)
0.286119 + 0.958194i \(0.407635\pi\)
\(200\) 0 0
\(201\) −39.2251 −2.76672
\(202\) 9.73436 0.684907
\(203\) −25.2700 −1.77361
\(204\) −1.70796 −0.119581
\(205\) 0 0
\(206\) −8.33151 −0.580484
\(207\) −28.7344 −1.99718
\(208\) 6.23163 0.432085
\(209\) −0.728896 −0.0504188
\(210\) 0 0
\(211\) −11.6410 −0.801400 −0.400700 0.916209i \(-0.631233\pi\)
−0.400700 + 0.916209i \(0.631233\pi\)
\(212\) 1.53020 0.105095
\(213\) −13.3370 −0.913834
\(214\) −15.0264 −1.02718
\(215\) 0 0
\(216\) −9.70142 −0.660098
\(217\) −14.9815 −1.01701
\(218\) 13.6619 0.925304
\(219\) 12.4148 0.838917
\(220\) 0 0
\(221\) −3.50927 −0.236059
\(222\) −17.3754 −1.16616
\(223\) 15.6554 1.04836 0.524182 0.851607i \(-0.324371\pi\)
0.524182 + 0.851607i \(0.324371\pi\)
\(224\) 2.46980 0.165020
\(225\) 0 0
\(226\) 1.20524 0.0801710
\(227\) −4.80131 −0.318674 −0.159337 0.987224i \(-0.550936\pi\)
−0.159337 + 0.987224i \(0.550936\pi\)
\(228\) −3.03293 −0.200861
\(229\) 2.79476 0.184683 0.0923416 0.995727i \(-0.470565\pi\)
0.0923416 + 0.995727i \(0.470565\pi\)
\(230\) 0 0
\(231\) −5.45996 −0.359239
\(232\) −10.2316 −0.671739
\(233\) −11.5422 −0.756155 −0.378078 0.925774i \(-0.623415\pi\)
−0.378078 + 0.925774i \(0.623415\pi\)
\(234\) −38.6279 −2.52519
\(235\) 0 0
\(236\) −5.76183 −0.375063
\(237\) 46.5160 3.02154
\(238\) −1.39084 −0.0901547
\(239\) −26.2251 −1.69636 −0.848180 0.529708i \(-0.822301\pi\)
−0.848180 + 0.529708i \(0.822301\pi\)
\(240\) 0 0
\(241\) −12.0659 −0.777231 −0.388615 0.921400i \(-0.627047\pi\)
−0.388615 + 0.921400i \(0.627047\pi\)
\(242\) 10.4687 0.672954
\(243\) 3.73544 0.239629
\(244\) 10.9396 0.700336
\(245\) 0 0
\(246\) −14.5422 −0.927177
\(247\) −6.23163 −0.396509
\(248\) −6.06587 −0.385183
\(249\) −23.8242 −1.50980
\(250\) 0 0
\(251\) 13.5237 0.853606 0.426803 0.904345i \(-0.359640\pi\)
0.426803 + 0.904345i \(0.359640\pi\)
\(252\) −15.3095 −0.964408
\(253\) −3.37884 −0.212426
\(254\) 9.52366 0.597568
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −22.7398 −1.41847 −0.709235 0.704972i \(-0.750960\pi\)
−0.709235 + 0.704972i \(0.750960\pi\)
\(258\) 24.4633 1.52302
\(259\) −14.1492 −0.879188
\(260\) 0 0
\(261\) 63.4227 3.92577
\(262\) 17.4028 1.07515
\(263\) 6.67395 0.411533 0.205767 0.978601i \(-0.434031\pi\)
0.205767 + 0.978601i \(0.434031\pi\)
\(264\) −2.21069 −0.136059
\(265\) 0 0
\(266\) −2.46980 −0.151433
\(267\) −30.3293 −1.85613
\(268\) −12.9330 −0.790012
\(269\) −29.7398 −1.81327 −0.906634 0.421917i \(-0.861357\pi\)
−0.906634 + 0.421917i \(0.861357\pi\)
\(270\) 0 0
\(271\) 1.11189 0.0675426 0.0337713 0.999430i \(-0.489248\pi\)
0.0337713 + 0.999430i \(0.489248\pi\)
\(272\) −0.563139 −0.0341453
\(273\) −46.6794 −2.82517
\(274\) 2.25910 0.136477
\(275\) 0 0
\(276\) −14.0593 −0.846272
\(277\) −13.1263 −0.788682 −0.394341 0.918964i \(-0.629027\pi\)
−0.394341 + 0.918964i \(0.629027\pi\)
\(278\) −16.8606 −1.01123
\(279\) 37.6004 2.25108
\(280\) 0 0
\(281\) 22.9265 1.36768 0.683840 0.729632i \(-0.260309\pi\)
0.683840 + 0.729632i \(0.260309\pi\)
\(282\) 24.6465 1.46768
\(283\) −0.860634 −0.0511594 −0.0255797 0.999673i \(-0.508143\pi\)
−0.0255797 + 0.999673i \(0.508143\pi\)
\(284\) −4.39738 −0.260937
\(285\) 0 0
\(286\) −4.54221 −0.268586
\(287\) −11.8421 −0.699016
\(288\) −6.19869 −0.365261
\(289\) −16.6829 −0.981346
\(290\) 0 0
\(291\) −33.3788 −1.95670
\(292\) 4.09334 0.239545
\(293\) −19.8212 −1.15796 −0.578982 0.815340i \(-0.696550\pi\)
−0.578982 + 0.815340i \(0.696550\pi\)
\(294\) 2.72998 0.159216
\(295\) 0 0
\(296\) −5.72890 −0.332985
\(297\) 7.07133 0.410320
\(298\) 13.0055 0.753386
\(299\) −28.8870 −1.67058
\(300\) 0 0
\(301\) 19.9210 1.14823
\(302\) −17.5895 −1.01216
\(303\) −29.5237 −1.69609
\(304\) −1.00000 −0.0573539
\(305\) 0 0
\(306\) 3.49073 0.199552
\(307\) 16.8661 0.962599 0.481299 0.876556i \(-0.340165\pi\)
0.481299 + 0.876556i \(0.340165\pi\)
\(308\) −1.80022 −0.102577
\(309\) 25.2689 1.43750
\(310\) 0 0
\(311\) 10.3250 0.585475 0.292738 0.956193i \(-0.405434\pi\)
0.292738 + 0.956193i \(0.405434\pi\)
\(312\) −18.9001 −1.07001
\(313\) 15.7684 0.891281 0.445641 0.895212i \(-0.352976\pi\)
0.445641 + 0.895212i \(0.352976\pi\)
\(314\) 9.52366 0.537451
\(315\) 0 0
\(316\) 15.3370 0.862772
\(317\) 2.17230 0.122009 0.0610043 0.998138i \(-0.480570\pi\)
0.0610043 + 0.998138i \(0.480570\pi\)
\(318\) −4.64101 −0.260255
\(319\) 7.45779 0.417556
\(320\) 0 0
\(321\) 45.5741 2.54370
\(322\) −11.4489 −0.638020
\(323\) 0.563139 0.0313339
\(324\) 10.8277 0.601539
\(325\) 0 0
\(326\) 13.1921 0.730645
\(327\) −41.4358 −2.29140
\(328\) −4.79476 −0.264747
\(329\) 20.0702 1.10651
\(330\) 0 0
\(331\) 11.9791 0.658429 0.329215 0.944255i \(-0.393216\pi\)
0.329215 + 0.944255i \(0.393216\pi\)
\(332\) −7.85517 −0.431109
\(333\) 35.5117 1.94603
\(334\) 1.81331 0.0992200
\(335\) 0 0
\(336\) −7.49073 −0.408653
\(337\) 11.1921 0.609675 0.304838 0.952404i \(-0.401398\pi\)
0.304838 + 0.952404i \(0.401398\pi\)
\(338\) −25.8332 −1.40514
\(339\) −3.65540 −0.198534
\(340\) 0 0
\(341\) 4.42139 0.239432
\(342\) 6.19869 0.335187
\(343\) 19.5117 1.05353
\(344\) 8.06587 0.434883
\(345\) 0 0
\(346\) −12.5237 −0.673276
\(347\) 20.3843 1.09429 0.547143 0.837039i \(-0.315715\pi\)
0.547143 + 0.837039i \(0.315715\pi\)
\(348\) 31.0318 1.66348
\(349\) −0.252557 −0.0135191 −0.00675954 0.999977i \(-0.502152\pi\)
−0.00675954 + 0.999977i \(0.502152\pi\)
\(350\) 0 0
\(351\) 60.4556 3.22688
\(352\) −0.728896 −0.0388503
\(353\) 28.6434 1.52453 0.762267 0.647263i \(-0.224086\pi\)
0.762267 + 0.647263i \(0.224086\pi\)
\(354\) 17.4753 0.928799
\(355\) 0 0
\(356\) −10.0000 −0.529999
\(357\) 4.21832 0.223257
\(358\) −1.39738 −0.0738540
\(359\) −18.5741 −0.980301 −0.490151 0.871638i \(-0.663058\pi\)
−0.490151 + 0.871638i \(0.663058\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −5.72890 −0.301104
\(363\) −31.7509 −1.66649
\(364\) −15.3908 −0.806699
\(365\) 0 0
\(366\) −33.1791 −1.73430
\(367\) 4.79476 0.250285 0.125142 0.992139i \(-0.460061\pi\)
0.125142 + 0.992139i \(0.460061\pi\)
\(368\) −4.63555 −0.241645
\(369\) 29.7213 1.54723
\(370\) 0 0
\(371\) −3.77929 −0.196211
\(372\) 18.3974 0.953860
\(373\) −15.9485 −0.825783 −0.412892 0.910780i \(-0.635481\pi\)
−0.412892 + 0.910780i \(0.635481\pi\)
\(374\) 0.410470 0.0212249
\(375\) 0 0
\(376\) 8.12628 0.419081
\(377\) 63.7597 3.28379
\(378\) 23.9605 1.23240
\(379\) −16.8013 −0.863025 −0.431513 0.902107i \(-0.642020\pi\)
−0.431513 + 0.902107i \(0.642020\pi\)
\(380\) 0 0
\(381\) −28.8846 −1.47980
\(382\) 27.0198 1.38246
\(383\) −26.7948 −1.36915 −0.684574 0.728943i \(-0.740012\pi\)
−0.684574 + 0.728943i \(0.740012\pi\)
\(384\) −3.03293 −0.154774
\(385\) 0 0
\(386\) −23.0713 −1.17430
\(387\) −49.9978 −2.54153
\(388\) −11.0055 −0.558718
\(389\) 18.3424 0.929998 0.464999 0.885311i \(-0.346055\pi\)
0.464999 + 0.885311i \(0.346055\pi\)
\(390\) 0 0
\(391\) 2.61046 0.132017
\(392\) 0.900112 0.0454625
\(393\) −52.7817 −2.66248
\(394\) 0.794765 0.0400397
\(395\) 0 0
\(396\) 4.51820 0.227048
\(397\) −21.2162 −1.06481 −0.532404 0.846490i \(-0.678711\pi\)
−0.532404 + 0.846490i \(0.678711\pi\)
\(398\) −8.07241 −0.404633
\(399\) 7.49073 0.375005
\(400\) 0 0
\(401\) −27.8661 −1.39157 −0.695783 0.718252i \(-0.744943\pi\)
−0.695783 + 0.718252i \(0.744943\pi\)
\(402\) 39.2251 1.95637
\(403\) 37.8002 1.88296
\(404\) −9.73436 −0.484302
\(405\) 0 0
\(406\) 25.2700 1.25413
\(407\) 4.17577 0.206985
\(408\) 1.70796 0.0845568
\(409\) −18.0899 −0.894487 −0.447243 0.894412i \(-0.647594\pi\)
−0.447243 + 0.894412i \(0.647594\pi\)
\(410\) 0 0
\(411\) −6.85171 −0.337970
\(412\) 8.33151 0.410464
\(413\) 14.2305 0.700239
\(414\) 28.7344 1.41222
\(415\) 0 0
\(416\) −6.23163 −0.305531
\(417\) 51.1372 2.50420
\(418\) 0.728896 0.0356515
\(419\) −15.3370 −0.749260 −0.374630 0.927174i \(-0.622230\pi\)
−0.374630 + 0.927174i \(0.622230\pi\)
\(420\) 0 0
\(421\) −8.42486 −0.410602 −0.205301 0.978699i \(-0.565817\pi\)
−0.205301 + 0.978699i \(0.565817\pi\)
\(422\) 11.6410 0.566676
\(423\) −50.3723 −2.44918
\(424\) −1.53020 −0.0743133
\(425\) 0 0
\(426\) 13.3370 0.646178
\(427\) −27.0185 −1.30752
\(428\) 15.0264 0.726328
\(429\) 13.7762 0.665122
\(430\) 0 0
\(431\) 16.2766 0.784014 0.392007 0.919962i \(-0.371781\pi\)
0.392007 + 0.919962i \(0.371781\pi\)
\(432\) 9.70142 0.466760
\(433\) 18.1976 0.874521 0.437261 0.899335i \(-0.355949\pi\)
0.437261 + 0.899335i \(0.355949\pi\)
\(434\) 14.9815 0.719133
\(435\) 0 0
\(436\) −13.6619 −0.654288
\(437\) 4.63555 0.221749
\(438\) −12.4148 −0.593204
\(439\) 20.4214 0.974660 0.487330 0.873218i \(-0.337971\pi\)
0.487330 + 0.873218i \(0.337971\pi\)
\(440\) 0 0
\(441\) −5.57952 −0.265691
\(442\) 3.50927 0.166919
\(443\) −21.6685 −1.02950 −0.514750 0.857340i \(-0.672115\pi\)
−0.514750 + 0.857340i \(0.672115\pi\)
\(444\) 17.3754 0.824598
\(445\) 0 0
\(446\) −15.6554 −0.741305
\(447\) −39.4447 −1.86567
\(448\) −2.46980 −0.116687
\(449\) 23.8133 1.12382 0.561910 0.827198i \(-0.310067\pi\)
0.561910 + 0.827198i \(0.310067\pi\)
\(450\) 0 0
\(451\) 3.49489 0.164568
\(452\) −1.20524 −0.0566895
\(453\) 53.3479 2.50650
\(454\) 4.80131 0.225337
\(455\) 0 0
\(456\) 3.03293 0.142030
\(457\) −9.15813 −0.428399 −0.214200 0.976790i \(-0.568714\pi\)
−0.214200 + 0.976790i \(0.568714\pi\)
\(458\) −2.79476 −0.130591
\(459\) −5.46325 −0.255003
\(460\) 0 0
\(461\) −7.78931 −0.362784 −0.181392 0.983411i \(-0.558060\pi\)
−0.181392 + 0.983411i \(0.558060\pi\)
\(462\) 5.45996 0.254020
\(463\) −0.405011 −0.0188225 −0.00941123 0.999956i \(-0.502996\pi\)
−0.00941123 + 0.999956i \(0.502996\pi\)
\(464\) 10.2316 0.474991
\(465\) 0 0
\(466\) 11.5422 0.534682
\(467\) 1.95814 0.0906118 0.0453059 0.998973i \(-0.485574\pi\)
0.0453059 + 0.998973i \(0.485574\pi\)
\(468\) 38.6279 1.78558
\(469\) 31.9420 1.47494
\(470\) 0 0
\(471\) −28.8846 −1.33093
\(472\) 5.76183 0.265210
\(473\) −5.87918 −0.270325
\(474\) −46.5160 −2.13655
\(475\) 0 0
\(476\) 1.39084 0.0637490
\(477\) 9.48527 0.434301
\(478\) 26.2251 1.19951
\(479\) −22.9210 −1.04729 −0.523645 0.851937i \(-0.675428\pi\)
−0.523645 + 0.851937i \(0.675428\pi\)
\(480\) 0 0
\(481\) 35.7003 1.62780
\(482\) 12.0659 0.549585
\(483\) 34.7237 1.57998
\(484\) −10.4687 −0.475850
\(485\) 0 0
\(486\) −3.73544 −0.169443
\(487\) 23.9450 1.08505 0.542527 0.840038i \(-0.317468\pi\)
0.542527 + 0.840038i \(0.317468\pi\)
\(488\) −10.9396 −0.495212
\(489\) −40.0109 −1.80936
\(490\) 0 0
\(491\) 3.86826 0.174572 0.0872861 0.996183i \(-0.472181\pi\)
0.0872861 + 0.996183i \(0.472181\pi\)
\(492\) 14.5422 0.655613
\(493\) −5.76183 −0.259500
\(494\) 6.23163 0.280374
\(495\) 0 0
\(496\) 6.06587 0.272366
\(497\) 10.8606 0.487166
\(498\) 23.8242 1.06759
\(499\) −7.92104 −0.354595 −0.177297 0.984157i \(-0.556735\pi\)
−0.177297 + 0.984157i \(0.556735\pi\)
\(500\) 0 0
\(501\) −5.49966 −0.245706
\(502\) −13.5237 −0.603591
\(503\) 16.6949 0.744388 0.372194 0.928155i \(-0.378606\pi\)
0.372194 + 0.928155i \(0.378606\pi\)
\(504\) 15.3095 0.681939
\(505\) 0 0
\(506\) 3.37884 0.150208
\(507\) 78.3503 3.47966
\(508\) −9.52366 −0.422544
\(509\) 24.4028 1.08164 0.540818 0.841139i \(-0.318115\pi\)
0.540818 + 0.841139i \(0.318115\pi\)
\(510\) 0 0
\(511\) −10.1097 −0.447228
\(512\) −1.00000 −0.0441942
\(513\) −9.70142 −0.428328
\(514\) 22.7398 1.00301
\(515\) 0 0
\(516\) −24.4633 −1.07693
\(517\) −5.92321 −0.260503
\(518\) 14.1492 0.621680
\(519\) 37.9834 1.66729
\(520\) 0 0
\(521\) 26.0659 1.14197 0.570983 0.820962i \(-0.306562\pi\)
0.570983 + 0.820962i \(0.306562\pi\)
\(522\) −63.4227 −2.77594
\(523\) −17.8726 −0.781516 −0.390758 0.920493i \(-0.627787\pi\)
−0.390758 + 0.920493i \(0.627787\pi\)
\(524\) −17.4028 −0.760247
\(525\) 0 0
\(526\) −6.67395 −0.290998
\(527\) −3.41593 −0.148800
\(528\) 2.21069 0.0962081
\(529\) −1.51166 −0.0657243
\(530\) 0 0
\(531\) −35.7158 −1.54993
\(532\) 2.46980 0.107079
\(533\) 29.8792 1.29421
\(534\) 30.3293 1.31248
\(535\) 0 0
\(536\) 12.9330 0.558623
\(537\) 4.23817 0.182891
\(538\) 29.7398 1.28217
\(539\) −0.656088 −0.0282597
\(540\) 0 0
\(541\) 23.0604 0.991444 0.495722 0.868481i \(-0.334903\pi\)
0.495722 + 0.868481i \(0.334903\pi\)
\(542\) −1.11189 −0.0477598
\(543\) 17.3754 0.745648
\(544\) 0.563139 0.0241444
\(545\) 0 0
\(546\) 46.6794 1.99769
\(547\) 27.7584 1.18686 0.593431 0.804885i \(-0.297773\pi\)
0.593431 + 0.804885i \(0.297773\pi\)
\(548\) −2.25910 −0.0965040
\(549\) 67.8111 2.89411
\(550\) 0 0
\(551\) −10.2316 −0.435882
\(552\) 14.0593 0.598405
\(553\) −37.8792 −1.61079
\(554\) 13.1263 0.557682
\(555\) 0 0
\(556\) 16.8606 0.715050
\(557\) 8.60808 0.364736 0.182368 0.983230i \(-0.441624\pi\)
0.182368 + 0.983230i \(0.441624\pi\)
\(558\) −37.6004 −1.59175
\(559\) −50.2635 −2.12592
\(560\) 0 0
\(561\) −1.24493 −0.0525609
\(562\) −22.9265 −0.967096
\(563\) −7.93959 −0.334614 −0.167307 0.985905i \(-0.553507\pi\)
−0.167307 + 0.985905i \(0.553507\pi\)
\(564\) −24.6465 −1.03780
\(565\) 0 0
\(566\) 0.860634 0.0361751
\(567\) −26.7422 −1.12307
\(568\) 4.39738 0.184510
\(569\) −1.65757 −0.0694889 −0.0347444 0.999396i \(-0.511062\pi\)
−0.0347444 + 0.999396i \(0.511062\pi\)
\(570\) 0 0
\(571\) −14.0528 −0.588091 −0.294045 0.955791i \(-0.595002\pi\)
−0.294045 + 0.955791i \(0.595002\pi\)
\(572\) 4.54221 0.189919
\(573\) −81.9494 −3.42349
\(574\) 11.8421 0.494279
\(575\) 0 0
\(576\) 6.19869 0.258279
\(577\) 1.36445 0.0568027 0.0284014 0.999597i \(-0.490958\pi\)
0.0284014 + 0.999597i \(0.490958\pi\)
\(578\) 16.6829 0.693916
\(579\) 69.9738 2.90801
\(580\) 0 0
\(581\) 19.4007 0.804876
\(582\) 33.3788 1.38360
\(583\) 1.11536 0.0461935
\(584\) −4.09334 −0.169384
\(585\) 0 0
\(586\) 19.8212 0.818804
\(587\) 24.6609 1.01786 0.508931 0.860807i \(-0.330041\pi\)
0.508931 + 0.860807i \(0.330041\pi\)
\(588\) −2.72998 −0.112583
\(589\) −6.06587 −0.249940
\(590\) 0 0
\(591\) −2.41047 −0.0991535
\(592\) 5.72890 0.235456
\(593\) 0.747443 0.0306938 0.0153469 0.999882i \(-0.495115\pi\)
0.0153469 + 0.999882i \(0.495115\pi\)
\(594\) −7.07133 −0.290140
\(595\) 0 0
\(596\) −13.0055 −0.532724
\(597\) 24.4831 1.00203
\(598\) 28.8870 1.18128
\(599\) 1.40501 0.0574072 0.0287036 0.999588i \(-0.490862\pi\)
0.0287036 + 0.999588i \(0.490862\pi\)
\(600\) 0 0
\(601\) 29.7453 1.21334 0.606668 0.794956i \(-0.292506\pi\)
0.606668 + 0.794956i \(0.292506\pi\)
\(602\) −19.9210 −0.811921
\(603\) −80.1680 −3.26469
\(604\) 17.5895 0.715708
\(605\) 0 0
\(606\) 29.5237 1.19932
\(607\) −5.66849 −0.230077 −0.115038 0.993361i \(-0.536699\pi\)
−0.115038 + 0.993361i \(0.536699\pi\)
\(608\) 1.00000 0.0405554
\(609\) −76.6423 −3.10570
\(610\) 0 0
\(611\) −50.6399 −2.04867
\(612\) −3.49073 −0.141104
\(613\) 2.99454 0.120948 0.0604742 0.998170i \(-0.480739\pi\)
0.0604742 + 0.998170i \(0.480739\pi\)
\(614\) −16.8661 −0.680660
\(615\) 0 0
\(616\) 1.80022 0.0725331
\(617\) 32.3370 1.30184 0.650919 0.759147i \(-0.274384\pi\)
0.650919 + 0.759147i \(0.274384\pi\)
\(618\) −25.2689 −1.01647
\(619\) −20.9265 −0.841107 −0.420554 0.907268i \(-0.638164\pi\)
−0.420554 + 0.907268i \(0.638164\pi\)
\(620\) 0 0
\(621\) −44.9714 −1.80464
\(622\) −10.3250 −0.413994
\(623\) 24.6980 0.989503
\(624\) 18.9001 0.756610
\(625\) 0 0
\(626\) −15.7684 −0.630231
\(627\) −2.21069 −0.0882866
\(628\) −9.52366 −0.380035
\(629\) −3.22617 −0.128636
\(630\) 0 0
\(631\) 22.8002 0.907663 0.453831 0.891088i \(-0.350057\pi\)
0.453831 + 0.891088i \(0.350057\pi\)
\(632\) −15.3370 −0.610072
\(633\) −35.3064 −1.40330
\(634\) −2.17230 −0.0862731
\(635\) 0 0
\(636\) 4.64101 0.184028
\(637\) −5.60916 −0.222243
\(638\) −7.45779 −0.295257
\(639\) −27.2580 −1.07831
\(640\) 0 0
\(641\) 36.3184 1.43449 0.717246 0.696820i \(-0.245402\pi\)
0.717246 + 0.696820i \(0.245402\pi\)
\(642\) −45.5741 −1.79866
\(643\) −13.6135 −0.536865 −0.268433 0.963298i \(-0.586506\pi\)
−0.268433 + 0.963298i \(0.586506\pi\)
\(644\) 11.4489 0.451148
\(645\) 0 0
\(646\) −0.563139 −0.0221564
\(647\) 0.0724126 0.00284683 0.00142342 0.999999i \(-0.499547\pi\)
0.00142342 + 0.999999i \(0.499547\pi\)
\(648\) −10.8277 −0.425352
\(649\) −4.19978 −0.164856
\(650\) 0 0
\(651\) −45.4378 −1.78085
\(652\) −13.1921 −0.516644
\(653\) 43.5346 1.70364 0.851820 0.523835i \(-0.175499\pi\)
0.851820 + 0.523835i \(0.175499\pi\)
\(654\) 41.4358 1.62027
\(655\) 0 0
\(656\) 4.79476 0.187204
\(657\) 25.3734 0.989910
\(658\) −20.0702 −0.782420
\(659\) −33.4512 −1.30308 −0.651538 0.758616i \(-0.725876\pi\)
−0.651538 + 0.758616i \(0.725876\pi\)
\(660\) 0 0
\(661\) −2.89465 −0.112589 −0.0562945 0.998414i \(-0.517929\pi\)
−0.0562945 + 0.998414i \(0.517929\pi\)
\(662\) −11.9791 −0.465580
\(663\) −10.6434 −0.413355
\(664\) 7.85517 0.304840
\(665\) 0 0
\(666\) −35.5117 −1.37605
\(667\) −47.4292 −1.83647
\(668\) −1.81331 −0.0701591
\(669\) 47.4818 1.83575
\(670\) 0 0
\(671\) 7.97382 0.307826
\(672\) 7.49073 0.288961
\(673\) −42.8475 −1.65165 −0.825826 0.563925i \(-0.809291\pi\)
−0.825826 + 0.563925i \(0.809291\pi\)
\(674\) −11.1921 −0.431105
\(675\) 0 0
\(676\) 25.8332 0.993583
\(677\) −34.4567 −1.32428 −0.662139 0.749381i \(-0.730351\pi\)
−0.662139 + 0.749381i \(0.730351\pi\)
\(678\) 3.65540 0.140385
\(679\) 27.1812 1.04312
\(680\) 0 0
\(681\) −14.5621 −0.558019
\(682\) −4.42139 −0.169304
\(683\) 2.73436 0.104627 0.0523136 0.998631i \(-0.483340\pi\)
0.0523136 + 0.998631i \(0.483340\pi\)
\(684\) −6.19869 −0.237013
\(685\) 0 0
\(686\) −19.5117 −0.744959
\(687\) 8.47634 0.323393
\(688\) −8.06587 −0.307508
\(689\) 9.53566 0.363280
\(690\) 0 0
\(691\) −4.74198 −0.180394 −0.0901968 0.995924i \(-0.528750\pi\)
−0.0901968 + 0.995924i \(0.528750\pi\)
\(692\) 12.5237 0.476078
\(693\) −11.1590 −0.423897
\(694\) −20.3843 −0.773777
\(695\) 0 0
\(696\) −31.0318 −1.17626
\(697\) −2.70012 −0.102274
\(698\) 0.252557 0.00955943
\(699\) −35.0068 −1.32408
\(700\) 0 0
\(701\) 33.1372 1.25157 0.625787 0.779994i \(-0.284778\pi\)
0.625787 + 0.779994i \(0.284778\pi\)
\(702\) −60.4556 −2.28175
\(703\) −5.72890 −0.216069
\(704\) 0.728896 0.0274713
\(705\) 0 0
\(706\) −28.6434 −1.07801
\(707\) 24.0419 0.904187
\(708\) −17.4753 −0.656760
\(709\) 5.37884 0.202006 0.101003 0.994886i \(-0.467795\pi\)
0.101003 + 0.994886i \(0.467795\pi\)
\(710\) 0 0
\(711\) 95.0692 3.56537
\(712\) 10.0000 0.374766
\(713\) −28.1187 −1.05305
\(714\) −4.21832 −0.157867
\(715\) 0 0
\(716\) 1.39738 0.0522226
\(717\) −79.5390 −2.97044
\(718\) 18.5741 0.693178
\(719\) 33.0857 1.23389 0.616944 0.787007i \(-0.288370\pi\)
0.616944 + 0.787007i \(0.288370\pi\)
\(720\) 0 0
\(721\) −20.5771 −0.766332
\(722\) −1.00000 −0.0372161
\(723\) −36.5950 −1.36098
\(724\) 5.72890 0.212913
\(725\) 0 0
\(726\) 31.7509 1.17839
\(727\) −2.62463 −0.0973423 −0.0486711 0.998815i \(-0.515499\pi\)
−0.0486711 + 0.998815i \(0.515499\pi\)
\(728\) 15.3908 0.570422
\(729\) −21.1538 −0.783472
\(730\) 0 0
\(731\) 4.54221 0.168000
\(732\) 33.1791 1.22633
\(733\) −0.608077 −0.0224598 −0.0112299 0.999937i \(-0.503575\pi\)
−0.0112299 + 0.999937i \(0.503575\pi\)
\(734\) −4.79476 −0.176978
\(735\) 0 0
\(736\) 4.63555 0.170869
\(737\) −9.42685 −0.347242
\(738\) −29.7213 −1.09405
\(739\) 36.3974 1.33890 0.669450 0.742857i \(-0.266530\pi\)
0.669450 + 0.742857i \(0.266530\pi\)
\(740\) 0 0
\(741\) −18.9001 −0.694313
\(742\) 3.77929 0.138742
\(743\) 23.0713 0.846405 0.423202 0.906035i \(-0.360906\pi\)
0.423202 + 0.906035i \(0.360906\pi\)
\(744\) −18.3974 −0.674481
\(745\) 0 0
\(746\) 15.9485 0.583917
\(747\) −48.6918 −1.78154
\(748\) −0.410470 −0.0150083
\(749\) −37.1121 −1.35605
\(750\) 0 0
\(751\) 4.75290 0.173436 0.0867179 0.996233i \(-0.472362\pi\)
0.0867179 + 0.996233i \(0.472362\pi\)
\(752\) −8.12628 −0.296335
\(753\) 41.0164 1.49472
\(754\) −63.7597 −2.32199
\(755\) 0 0
\(756\) −23.9605 −0.871436
\(757\) −26.8057 −0.974269 −0.487135 0.873327i \(-0.661958\pi\)
−0.487135 + 0.873327i \(0.661958\pi\)
\(758\) 16.8013 0.610251
\(759\) −10.2478 −0.371971
\(760\) 0 0
\(761\) 25.4478 0.922481 0.461241 0.887275i \(-0.347404\pi\)
0.461241 + 0.887275i \(0.347404\pi\)
\(762\) 28.8846 1.04638
\(763\) 33.7422 1.22155
\(764\) −27.0198 −0.977544
\(765\) 0 0
\(766\) 26.7948 0.968134
\(767\) −35.9056 −1.29648
\(768\) 3.03293 0.109442
\(769\) −14.6421 −0.528007 −0.264004 0.964522i \(-0.585043\pi\)
−0.264004 + 0.964522i \(0.585043\pi\)
\(770\) 0 0
\(771\) −68.9684 −2.48384
\(772\) 23.0713 0.830355
\(773\) 16.8462 0.605917 0.302959 0.953004i \(-0.402026\pi\)
0.302959 + 0.953004i \(0.402026\pi\)
\(774\) 49.9978 1.79713
\(775\) 0 0
\(776\) 11.0055 0.395073
\(777\) −42.9136 −1.53952
\(778\) −18.3424 −0.657608
\(779\) −4.79476 −0.171790
\(780\) 0 0
\(781\) −3.20524 −0.114692
\(782\) −2.61046 −0.0933499
\(783\) 99.2613 3.54731
\(784\) −0.900112 −0.0321469
\(785\) 0 0
\(786\) 52.7817 1.88266
\(787\) −18.7367 −0.667893 −0.333946 0.942592i \(-0.608380\pi\)
−0.333946 + 0.942592i \(0.608380\pi\)
\(788\) −0.794765 −0.0283123
\(789\) 20.2416 0.720621
\(790\) 0 0
\(791\) 2.97668 0.105839
\(792\) −4.51820 −0.160547
\(793\) 68.1714 2.42084
\(794\) 21.2162 0.752933
\(795\) 0 0
\(796\) 8.07241 0.286119
\(797\) 37.9900 1.34567 0.672837 0.739791i \(-0.265075\pi\)
0.672837 + 0.739791i \(0.265075\pi\)
\(798\) −7.49073 −0.265169
\(799\) 4.57623 0.161895
\(800\) 0 0
\(801\) −61.9869 −2.19020
\(802\) 27.8661 0.983986
\(803\) 2.98362 0.105290
\(804\) −39.2251 −1.38336
\(805\) 0 0
\(806\) −37.8002 −1.33146
\(807\) −90.1989 −3.17515
\(808\) 9.73436 0.342453
\(809\) 21.8857 0.769461 0.384731 0.923029i \(-0.374294\pi\)
0.384731 + 0.923029i \(0.374294\pi\)
\(810\) 0 0
\(811\) 37.8595 1.32943 0.664714 0.747098i \(-0.268553\pi\)
0.664714 + 0.747098i \(0.268553\pi\)
\(812\) −25.2700 −0.886804
\(813\) 3.37229 0.118271
\(814\) −4.17577 −0.146361
\(815\) 0 0
\(816\) −1.70796 −0.0597907
\(817\) 8.06587 0.282189
\(818\) 18.0899 0.632498
\(819\) −95.4031 −3.33365
\(820\) 0 0
\(821\) −20.1976 −0.704901 −0.352451 0.935830i \(-0.614652\pi\)
−0.352451 + 0.935830i \(0.614652\pi\)
\(822\) 6.85171 0.238981
\(823\) 4.34590 0.151489 0.0757443 0.997127i \(-0.475867\pi\)
0.0757443 + 0.997127i \(0.475867\pi\)
\(824\) −8.33151 −0.290242
\(825\) 0 0
\(826\) −14.2305 −0.495144
\(827\) 56.8375 1.97643 0.988217 0.153057i \(-0.0489119\pi\)
0.988217 + 0.153057i \(0.0489119\pi\)
\(828\) −28.7344 −0.998588
\(829\) −17.4543 −0.606214 −0.303107 0.952957i \(-0.598024\pi\)
−0.303107 + 0.952957i \(0.598024\pi\)
\(830\) 0 0
\(831\) −39.8111 −1.38103
\(832\) 6.23163 0.216043
\(833\) 0.506888 0.0175626
\(834\) −51.1372 −1.77074
\(835\) 0 0
\(836\) −0.728896 −0.0252094
\(837\) 58.8475 2.03407
\(838\) 15.3370 0.529807
\(839\) 1.77622 0.0613219 0.0306609 0.999530i \(-0.490239\pi\)
0.0306609 + 0.999530i \(0.490239\pi\)
\(840\) 0 0
\(841\) 75.6862 2.60987
\(842\) 8.42486 0.290340
\(843\) 69.5346 2.39490
\(844\) −11.6410 −0.400700
\(845\) 0 0
\(846\) 50.3723 1.73184
\(847\) 25.8556 0.888408
\(848\) 1.53020 0.0525475
\(849\) −2.61025 −0.0895834
\(850\) 0 0
\(851\) −26.5566 −0.910348
\(852\) −13.3370 −0.456917
\(853\) 16.1187 0.551892 0.275946 0.961173i \(-0.411009\pi\)
0.275946 + 0.961173i \(0.411009\pi\)
\(854\) 27.0185 0.924556
\(855\) 0 0
\(856\) −15.0264 −0.513591
\(857\) 47.2031 1.61243 0.806213 0.591625i \(-0.201514\pi\)
0.806213 + 0.591625i \(0.201514\pi\)
\(858\) −13.7762 −0.470312
\(859\) 37.3239 1.27347 0.636737 0.771081i \(-0.280284\pi\)
0.636737 + 0.771081i \(0.280284\pi\)
\(860\) 0 0
\(861\) −35.9163 −1.22402
\(862\) −16.2766 −0.554382
\(863\) 1.33697 0.0455111 0.0227555 0.999741i \(-0.492756\pi\)
0.0227555 + 0.999741i \(0.492756\pi\)
\(864\) −9.70142 −0.330049
\(865\) 0 0
\(866\) −18.1976 −0.618380
\(867\) −50.5981 −1.71840
\(868\) −14.9815 −0.508504
\(869\) 11.1791 0.379224
\(870\) 0 0
\(871\) −80.5939 −2.73082
\(872\) 13.6619 0.462652
\(873\) −68.2194 −2.30888
\(874\) −4.63555 −0.156800
\(875\) 0 0
\(876\) 12.4148 0.419459
\(877\) −13.1647 −0.444539 −0.222270 0.974985i \(-0.571347\pi\)
−0.222270 + 0.974985i \(0.571347\pi\)
\(878\) −20.4214 −0.689188
\(879\) −60.1163 −2.02767
\(880\) 0 0
\(881\) −10.2052 −0.343823 −0.171912 0.985112i \(-0.554994\pi\)
−0.171912 + 0.985112i \(0.554994\pi\)
\(882\) 5.57952 0.187872
\(883\) −1.49966 −0.0504674 −0.0252337 0.999682i \(-0.508033\pi\)
−0.0252337 + 0.999682i \(0.508033\pi\)
\(884\) −3.50927 −0.118030
\(885\) 0 0
\(886\) 21.6685 0.727967
\(887\) 46.9505 1.57644 0.788222 0.615391i \(-0.211002\pi\)
0.788222 + 0.615391i \(0.211002\pi\)
\(888\) −17.3754 −0.583079
\(889\) 23.5215 0.788886
\(890\) 0 0
\(891\) 7.89227 0.264401
\(892\) 15.6554 0.524182
\(893\) 8.12628 0.271936
\(894\) 39.4447 1.31923
\(895\) 0 0
\(896\) 2.46980 0.0825101
\(897\) −87.6125 −2.92529
\(898\) −23.8133 −0.794661
\(899\) 62.0637 2.06994
\(900\) 0 0
\(901\) −0.861719 −0.0287080
\(902\) −3.49489 −0.116367
\(903\) 60.4192 2.01063
\(904\) 1.20524 0.0400855
\(905\) 0 0
\(906\) −53.3479 −1.77236
\(907\) −16.3668 −0.543452 −0.271726 0.962375i \(-0.587594\pi\)
−0.271726 + 0.962375i \(0.587594\pi\)
\(908\) −4.80131 −0.159337
\(909\) −60.3403 −2.00136
\(910\) 0 0
\(911\) 32.3293 1.07112 0.535559 0.844498i \(-0.320101\pi\)
0.535559 + 0.844498i \(0.320101\pi\)
\(912\) −3.03293 −0.100430
\(913\) −5.72561 −0.189490
\(914\) 9.15813 0.302924
\(915\) 0 0
\(916\) 2.79476 0.0923416
\(917\) 42.9815 1.41937
\(918\) 5.46325 0.180314
\(919\) −22.8157 −0.752620 −0.376310 0.926494i \(-0.622807\pi\)
−0.376310 + 0.926494i \(0.622807\pi\)
\(920\) 0 0
\(921\) 51.1538 1.68557
\(922\) 7.78931 0.256527
\(923\) −27.4028 −0.901976
\(924\) −5.45996 −0.179620
\(925\) 0 0
\(926\) 0.405011 0.0133095
\(927\) 51.6445 1.69623
\(928\) −10.2316 −0.335870
\(929\) −27.2436 −0.893834 −0.446917 0.894575i \(-0.647478\pi\)
−0.446917 + 0.894575i \(0.647478\pi\)
\(930\) 0 0
\(931\) 0.900112 0.0295000
\(932\) −11.5422 −0.378078
\(933\) 31.3150 1.02521
\(934\) −1.95814 −0.0640722
\(935\) 0 0
\(936\) −38.6279 −1.26259
\(937\) 51.5006 1.68245 0.841225 0.540685i \(-0.181835\pi\)
0.841225 + 0.540685i \(0.181835\pi\)
\(938\) −31.9420 −1.04294
\(939\) 47.8244 1.56069
\(940\) 0 0
\(941\) −40.8541 −1.33181 −0.665903 0.746039i \(-0.731953\pi\)
−0.665903 + 0.746039i \(0.731953\pi\)
\(942\) 28.8846 0.941112
\(943\) −22.2264 −0.723791
\(944\) −5.76183 −0.187532
\(945\) 0 0
\(946\) 5.87918 0.191149
\(947\) −38.2526 −1.24304 −0.621521 0.783398i \(-0.713485\pi\)
−0.621521 + 0.783398i \(0.713485\pi\)
\(948\) 46.5160 1.51077
\(949\) 25.5082 0.828031
\(950\) 0 0
\(951\) 6.58845 0.213645
\(952\) −1.39084 −0.0450773
\(953\) −54.1187 −1.75308 −0.876538 0.481334i \(-0.840153\pi\)
−0.876538 + 0.481334i \(0.840153\pi\)
\(954\) −9.48527 −0.307097
\(955\) 0 0
\(956\) −26.2251 −0.848180
\(957\) 22.6190 0.731168
\(958\) 22.9210 0.740545
\(959\) 5.57952 0.180172
\(960\) 0 0
\(961\) 5.79476 0.186928
\(962\) −35.7003 −1.15103
\(963\) 93.1440 3.00152
\(964\) −12.0659 −0.388615
\(965\) 0 0
\(966\) −34.7237 −1.11722
\(967\) −28.4214 −0.913970 −0.456985 0.889474i \(-0.651071\pi\)
−0.456985 + 0.889474i \(0.651071\pi\)
\(968\) 10.4687 0.336477
\(969\) 1.70796 0.0548677
\(970\) 0 0
\(971\) 30.8057 0.988601 0.494301 0.869291i \(-0.335424\pi\)
0.494301 + 0.869291i \(0.335424\pi\)
\(972\) 3.73544 0.119814
\(973\) −41.6423 −1.33499
\(974\) −23.9450 −0.767249
\(975\) 0 0
\(976\) 10.9396 0.350168
\(977\) −37.6554 −1.20470 −0.602351 0.798231i \(-0.705769\pi\)
−0.602351 + 0.798231i \(0.705769\pi\)
\(978\) 40.0109 1.27941
\(979\) −7.28896 −0.232956
\(980\) 0 0
\(981\) −84.6862 −2.70382
\(982\) −3.86826 −0.123441
\(983\) 38.7948 1.23736 0.618680 0.785643i \(-0.287668\pi\)
0.618680 + 0.785643i \(0.287668\pi\)
\(984\) −14.5422 −0.463589
\(985\) 0 0
\(986\) 5.76183 0.183494
\(987\) 60.8717 1.93757
\(988\) −6.23163 −0.198254
\(989\) 37.3898 1.18893
\(990\) 0 0
\(991\) −15.0295 −0.477427 −0.238713 0.971090i \(-0.576726\pi\)
−0.238713 + 0.971090i \(0.576726\pi\)
\(992\) −6.06587 −0.192592
\(993\) 36.3317 1.15295
\(994\) −10.8606 −0.344478
\(995\) 0 0
\(996\) −23.8242 −0.754900
\(997\) −1.18123 −0.0374099 −0.0187050 0.999825i \(-0.505954\pi\)
−0.0187050 + 0.999825i \(0.505954\pi\)
\(998\) 7.92104 0.250736
\(999\) 55.5784 1.75842
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 950.2.a.k.1.3 3
3.2 odd 2 8550.2.a.co.1.2 3
4.3 odd 2 7600.2.a.cb.1.1 3
5.2 odd 4 950.2.b.g.799.1 6
5.3 odd 4 950.2.b.g.799.6 6
5.4 even 2 950.2.a.m.1.1 yes 3
15.14 odd 2 8550.2.a.cj.1.2 3
20.19 odd 2 7600.2.a.bm.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
950.2.a.k.1.3 3 1.1 even 1 trivial
950.2.a.m.1.1 yes 3 5.4 even 2
950.2.b.g.799.1 6 5.2 odd 4
950.2.b.g.799.6 6 5.3 odd 4
7600.2.a.bm.1.3 3 20.19 odd 2
7600.2.a.cb.1.1 3 4.3 odd 2
8550.2.a.cj.1.2 3 15.14 odd 2
8550.2.a.co.1.2 3 3.2 odd 2