# Properties

 Label 950.2.a.k Level $950$ Weight $2$ Character orbit 950.a Self dual yes Analytic conductor $7.586$ Analytic rank $0$ Dimension $3$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [950,2,Mod(1,950)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(950, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("950.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$950 = 2 \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 950.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$7.58578819202$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: 3.3.257.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - x^{2} - 4x + 3$$ x^3 - x^2 - 4*x + 3 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - q^{2} + (\beta_{2} + \beta_1 - 1) q^{3} + q^{4} + ( - \beta_{2} - \beta_1 + 1) q^{6} + ( - 2 \beta_{2} + \beta_1 - 1) q^{7} - q^{8} + (\beta_1 + 4) q^{9}+O(q^{10})$$ q - q^2 + (b2 + b1 - 1) * q^3 + q^4 + (-b2 - b1 + 1) * q^6 + (-2*b2 + b1 - 1) * q^7 - q^8 + (b1 + 4) * q^9 $$q - q^{2} + (\beta_{2} + \beta_1 - 1) q^{3} + q^{4} + ( - \beta_{2} - \beta_1 + 1) q^{6} + ( - 2 \beta_{2} + \beta_1 - 1) q^{7} - q^{8} + (\beta_1 + 4) q^{9} + ( - 2 \beta_{2} + 2 \beta_1) q^{11} + (\beta_{2} + \beta_1 - 1) q^{12} + (\beta_{2} + 2 \beta_1) q^{13} + (2 \beta_{2} - \beta_1 + 1) q^{14} + q^{16} + (\beta_{2} - 2 \beta_1 + 2) q^{17} + ( - \beta_1 - 4) q^{18} - q^{19} + (3 \beta_{2} - 5 \beta_1 - 2) q^{21} + (2 \beta_{2} - 2 \beta_1) q^{22} + ( - \beta_{2} + \beta_1 - 5) q^{23} + ( - \beta_{2} - \beta_1 + 1) q^{24} + ( - \beta_{2} - 2 \beta_1) q^{26} + (3 \beta_{2} + \beta_1 + 2) q^{27} + ( - 2 \beta_{2} + \beta_1 - 1) q^{28} + (\beta_{2} + 2 \beta_1 + 4) q^{29} + (2 \beta_{2} + 2 \beta_1 - 2) q^{31} - q^{32} + (6 \beta_{2} - 4 \beta_1) q^{33} + ( - \beta_{2} + 2 \beta_1 - 2) q^{34} + (\beta_1 + 4) q^{36} + ( - 2 \beta_{2} + 2 \beta_1 + 5) q^{37} + q^{38} + (3 \beta_{2} + 2 \beta_1 + 9) q^{39} + (4 \beta_1 - 4) q^{41} + ( - 3 \beta_{2} + 5 \beta_1 + 2) q^{42} + ( - 2 \beta_{2} - 2 \beta_1) q^{43} + ( - 2 \beta_{2} + 2 \beta_1) q^{44} + (\beta_{2} - \beta_1 + 5) q^{46} + (2 \beta_{2} - 4 \beta_1 - 3) q^{47} + (\beta_{2} + \beta_1 - 1) q^{48} + ( - 3 \beta_{2} - 2 \beta_1 + 9) q^{49} + ( - 3 \beta_{2} + 4 \beta_1 - 5) q^{51} + (\beta_{2} + 2 \beta_1) q^{52} + ( - 2 \beta_{2} + \beta_1 + 3) q^{53} + ( - 3 \beta_{2} - \beta_1 - 2) q^{54} + (2 \beta_{2} - \beta_1 + 1) q^{56} + ( - \beta_{2} - \beta_1 + 1) q^{57} + ( - \beta_{2} - 2 \beta_1 - 4) q^{58} + (\beta_{2} - 3 \beta_1 - 1) q^{59} + (4 \beta_{2} - 2 \beta_1 + 8) q^{61} + ( - 2 \beta_{2} - 2 \beta_1 + 2) q^{62} + ( - 9 \beta_{2} + \beta_1 - 1) q^{63} + q^{64} + ( - 6 \beta_{2} + 4 \beta_1) q^{66} + ( - 4 \beta_{2} - 3 \beta_1 + 1) q^{67} + (\beta_{2} - 2 \beta_1 + 2) q^{68} + ( - 2 \beta_{2} - 7 \beta_1 + 5) q^{69} - 2 \beta_1 q^{71} + ( - \beta_1 - 4) q^{72} + ( - 3 \beta_{2} + 3 \beta_1 + 3) q^{73} + (2 \beta_{2} - 2 \beta_1 - 5) q^{74} - q^{76} + ( - 6 \beta_{2} - 4 \beta_1 + 18) q^{77} + ( - 3 \beta_{2} - 2 \beta_1 - 9) q^{78} + (4 \beta_{2} + 8) q^{79} + (\beta_{2} + 5 \beta_1 - 2) q^{81} + ( - 4 \beta_1 + 4) q^{82} + (4 \beta_{2} - 6 \beta_1 - 2) q^{83} + (3 \beta_{2} - 5 \beta_1 - 2) q^{84} + (2 \beta_{2} + 2 \beta_1) q^{86} + (7 \beta_{2} + 6 \beta_1 + 5) q^{87} + (2 \beta_{2} - 2 \beta_1) q^{88} - 10 q^{89} - 7 \beta_1 q^{91} + ( - \beta_{2} + \beta_1 - 5) q^{92} + (2 \beta_1 + 14) q^{93} + ( - 2 \beta_{2} + 4 \beta_1 + 3) q^{94} + ( - \beta_{2} - \beta_1 + 1) q^{96} - 6 \beta_{2} q^{97} + (3 \beta_{2} + 2 \beta_1 - 9) q^{98} + ( - 8 \beta_{2} + 6 \beta_1 + 6) q^{99}+O(q^{100})$$ q - q^2 + (b2 + b1 - 1) * q^3 + q^4 + (-b2 - b1 + 1) * q^6 + (-2*b2 + b1 - 1) * q^7 - q^8 + (b1 + 4) * q^9 + (-2*b2 + 2*b1) * q^11 + (b2 + b1 - 1) * q^12 + (b2 + 2*b1) * q^13 + (2*b2 - b1 + 1) * q^14 + q^16 + (b2 - 2*b1 + 2) * q^17 + (-b1 - 4) * q^18 - q^19 + (3*b2 - 5*b1 - 2) * q^21 + (2*b2 - 2*b1) * q^22 + (-b2 + b1 - 5) * q^23 + (-b2 - b1 + 1) * q^24 + (-b2 - 2*b1) * q^26 + (3*b2 + b1 + 2) * q^27 + (-2*b2 + b1 - 1) * q^28 + (b2 + 2*b1 + 4) * q^29 + (2*b2 + 2*b1 - 2) * q^31 - q^32 + (6*b2 - 4*b1) * q^33 + (-b2 + 2*b1 - 2) * q^34 + (b1 + 4) * q^36 + (-2*b2 + 2*b1 + 5) * q^37 + q^38 + (3*b2 + 2*b1 + 9) * q^39 + (4*b1 - 4) * q^41 + (-3*b2 + 5*b1 + 2) * q^42 + (-2*b2 - 2*b1) * q^43 + (-2*b2 + 2*b1) * q^44 + (b2 - b1 + 5) * q^46 + (2*b2 - 4*b1 - 3) * q^47 + (b2 + b1 - 1) * q^48 + (-3*b2 - 2*b1 + 9) * q^49 + (-3*b2 + 4*b1 - 5) * q^51 + (b2 + 2*b1) * q^52 + (-2*b2 + b1 + 3) * q^53 + (-3*b2 - b1 - 2) * q^54 + (2*b2 - b1 + 1) * q^56 + (-b2 - b1 + 1) * q^57 + (-b2 - 2*b1 - 4) * q^58 + (b2 - 3*b1 - 1) * q^59 + (4*b2 - 2*b1 + 8) * q^61 + (-2*b2 - 2*b1 + 2) * q^62 + (-9*b2 + b1 - 1) * q^63 + q^64 + (-6*b2 + 4*b1) * q^66 + (-4*b2 - 3*b1 + 1) * q^67 + (b2 - 2*b1 + 2) * q^68 + (-2*b2 - 7*b1 + 5) * q^69 - 2*b1 * q^71 + (-b1 - 4) * q^72 + (-3*b2 + 3*b1 + 3) * q^73 + (2*b2 - 2*b1 - 5) * q^74 - q^76 + (-6*b2 - 4*b1 + 18) * q^77 + (-3*b2 - 2*b1 - 9) * q^78 + (4*b2 + 8) * q^79 + (b2 + 5*b1 - 2) * q^81 + (-4*b1 + 4) * q^82 + (4*b2 - 6*b1 - 2) * q^83 + (3*b2 - 5*b1 - 2) * q^84 + (2*b2 + 2*b1) * q^86 + (7*b2 + 6*b1 + 5) * q^87 + (2*b2 - 2*b1) * q^88 - 10 * q^89 - 7*b1 * q^91 + (-b2 + b1 - 5) * q^92 + (2*b1 + 14) * q^93 + (-2*b2 + 4*b1 + 3) * q^94 + (-b2 - b1 + 1) * q^96 - 6*b2 * q^97 + (3*b2 + 2*b1 - 9) * q^98 + (-8*b2 + 6*b1 + 6) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q - 3 q^{2} - 2 q^{3} + 3 q^{4} + 2 q^{6} - 2 q^{7} - 3 q^{8} + 13 q^{9}+O(q^{10})$$ 3 * q - 3 * q^2 - 2 * q^3 + 3 * q^4 + 2 * q^6 - 2 * q^7 - 3 * q^8 + 13 * q^9 $$3 q - 3 q^{2} - 2 q^{3} + 3 q^{4} + 2 q^{6} - 2 q^{7} - 3 q^{8} + 13 q^{9} + 2 q^{11} - 2 q^{12} + 2 q^{13} + 2 q^{14} + 3 q^{16} + 4 q^{17} - 13 q^{18} - 3 q^{19} - 11 q^{21} - 2 q^{22} - 14 q^{23} + 2 q^{24} - 2 q^{26} + 7 q^{27} - 2 q^{28} + 14 q^{29} - 4 q^{31} - 3 q^{32} - 4 q^{33} - 4 q^{34} + 13 q^{36} + 17 q^{37} + 3 q^{38} + 29 q^{39} - 8 q^{41} + 11 q^{42} - 2 q^{43} + 2 q^{44} + 14 q^{46} - 13 q^{47} - 2 q^{48} + 25 q^{49} - 11 q^{51} + 2 q^{52} + 10 q^{53} - 7 q^{54} + 2 q^{56} + 2 q^{57} - 14 q^{58} - 6 q^{59} + 22 q^{61} + 4 q^{62} - 2 q^{63} + 3 q^{64} + 4 q^{66} + 4 q^{68} + 8 q^{69} - 2 q^{71} - 13 q^{72} + 12 q^{73} - 17 q^{74} - 3 q^{76} + 50 q^{77} - 29 q^{78} + 24 q^{79} - q^{81} + 8 q^{82} - 12 q^{83} - 11 q^{84} + 2 q^{86} + 21 q^{87} - 2 q^{88} - 30 q^{89} - 7 q^{91} - 14 q^{92} + 44 q^{93} + 13 q^{94} + 2 q^{96} - 25 q^{98} + 24 q^{99}+O(q^{100})$$ 3 * q - 3 * q^2 - 2 * q^3 + 3 * q^4 + 2 * q^6 - 2 * q^7 - 3 * q^8 + 13 * q^9 + 2 * q^11 - 2 * q^12 + 2 * q^13 + 2 * q^14 + 3 * q^16 + 4 * q^17 - 13 * q^18 - 3 * q^19 - 11 * q^21 - 2 * q^22 - 14 * q^23 + 2 * q^24 - 2 * q^26 + 7 * q^27 - 2 * q^28 + 14 * q^29 - 4 * q^31 - 3 * q^32 - 4 * q^33 - 4 * q^34 + 13 * q^36 + 17 * q^37 + 3 * q^38 + 29 * q^39 - 8 * q^41 + 11 * q^42 - 2 * q^43 + 2 * q^44 + 14 * q^46 - 13 * q^47 - 2 * q^48 + 25 * q^49 - 11 * q^51 + 2 * q^52 + 10 * q^53 - 7 * q^54 + 2 * q^56 + 2 * q^57 - 14 * q^58 - 6 * q^59 + 22 * q^61 + 4 * q^62 - 2 * q^63 + 3 * q^64 + 4 * q^66 + 4 * q^68 + 8 * q^69 - 2 * q^71 - 13 * q^72 + 12 * q^73 - 17 * q^74 - 3 * q^76 + 50 * q^77 - 29 * q^78 + 24 * q^79 - q^81 + 8 * q^82 - 12 * q^83 - 11 * q^84 + 2 * q^86 + 21 * q^87 - 2 * q^88 - 30 * q^89 - 7 * q^91 - 14 * q^92 + 44 * q^93 + 13 * q^94 + 2 * q^96 - 25 * q^98 + 24 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 4x + 3$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} - 3$$ v^2 - 3
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} + 3$$ b2 + 3

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0.713538 −1.91223 2.19869
−1.00000 −2.77733 1.00000 0 2.77733 4.69527 −1.00000 4.71354 0
1.2 −1.00000 −2.25561 1.00000 0 2.25561 −4.22547 −1.00000 2.08777 0
1.3 −1.00000 3.03293 1.00000 0 −3.03293 −2.46980 −1.00000 6.19869 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$+1$$
$$5$$ $$-1$$
$$19$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 950.2.a.k 3
3.b odd 2 1 8550.2.a.co 3
4.b odd 2 1 7600.2.a.cb 3
5.b even 2 1 950.2.a.m yes 3
5.c odd 4 2 950.2.b.g 6
15.d odd 2 1 8550.2.a.cj 3
20.d odd 2 1 7600.2.a.bm 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
950.2.a.k 3 1.a even 1 1 trivial
950.2.a.m yes 3 5.b even 2 1
950.2.b.g 6 5.c odd 4 2
7600.2.a.bm 3 20.d odd 2 1
7600.2.a.cb 3 4.b odd 2 1
8550.2.a.cj 3 15.d odd 2 1
8550.2.a.co 3 3.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(950))$$:

 $$T_{3}^{3} + 2T_{3}^{2} - 9T_{3} - 19$$ T3^3 + 2*T3^2 - 9*T3 - 19 $$T_{7}^{3} + 2T_{7}^{2} - 21T_{7} - 49$$ T7^3 + 2*T7^2 - 21*T7 - 49 $$T_{11}^{3} - 2T_{11}^{2} - 32T_{11} + 24$$ T11^3 - 2*T11^2 - 32*T11 + 24

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T + 1)^{3}$$
$3$ $$T^{3} + 2 T^{2} + \cdots - 19$$
$5$ $$T^{3}$$
$7$ $$T^{3} + 2 T^{2} + \cdots - 49$$
$11$ $$T^{3} - 2 T^{2} + \cdots + 24$$
$13$ $$T^{3} - 2 T^{2} + \cdots - 21$$
$17$ $$T^{3} - 4 T^{2} + \cdots - 7$$
$19$ $$(T + 1)^{3}$$
$23$ $$T^{3} + 14 T^{2} + \cdots + 63$$
$29$ $$T^{3} - 14 T^{2} + \cdots - 25$$
$31$ $$T^{3} + 4 T^{2} + \cdots - 152$$
$37$ $$T^{3} - 17 T^{2} + \cdots + 9$$
$41$ $$T^{3} + 8 T^{2} + \cdots - 64$$
$43$ $$T^{3} + 2 T^{2} + \cdots + 72$$
$47$ $$T^{3} + 13 T^{2} + \cdots - 525$$
$53$ $$T^{3} - 10 T^{2} + \cdots + 3$$
$59$ $$T^{3} + 6 T^{2} + \cdots - 175$$
$61$ $$T^{3} - 22 T^{2} + \cdots + 536$$
$67$ $$T^{3} - 131T + 469$$
$71$ $$T^{3} + 2 T^{2} + \cdots - 24$$
$73$ $$T^{3} - 12 T^{2} + \cdots + 243$$
$79$ $$T^{3} - 24 T^{2} + \cdots + 320$$
$83$ $$T^{3} + 12 T^{2} + \cdots - 1544$$
$89$ $$(T + 10)^{3}$$
$97$ $$T^{3} - 180T - 648$$