# Properties

 Label 950.2.a.d Level $950$ Weight $2$ Character orbit 950.a Self dual yes Analytic conductor $7.586$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [950,2,Mod(1,950)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(950, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("950.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$950 = 2 \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 950.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$7.58578819202$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 38) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} - q^{3} + q^{4} - q^{6} + q^{7} + q^{8} - 2 q^{9}+O(q^{10})$$ q + q^2 - q^3 + q^4 - q^6 + q^7 + q^8 - 2 * q^9 $$q + q^{2} - q^{3} + q^{4} - q^{6} + q^{7} + q^{8} - 2 q^{9} - 6 q^{11} - q^{12} - 5 q^{13} + q^{14} + q^{16} - 3 q^{17} - 2 q^{18} + q^{19} - q^{21} - 6 q^{22} - 3 q^{23} - q^{24} - 5 q^{26} + 5 q^{27} + q^{28} + 9 q^{29} - 4 q^{31} + q^{32} + 6 q^{33} - 3 q^{34} - 2 q^{36} - 2 q^{37} + q^{38} + 5 q^{39} - q^{42} - 8 q^{43} - 6 q^{44} - 3 q^{46} - q^{48} - 6 q^{49} + 3 q^{51} - 5 q^{52} + 3 q^{53} + 5 q^{54} + q^{56} - q^{57} + 9 q^{58} + 9 q^{59} - 10 q^{61} - 4 q^{62} - 2 q^{63} + q^{64} + 6 q^{66} - 5 q^{67} - 3 q^{68} + 3 q^{69} - 6 q^{71} - 2 q^{72} + 7 q^{73} - 2 q^{74} + q^{76} - 6 q^{77} + 5 q^{78} - 10 q^{79} + q^{81} + 6 q^{83} - q^{84} - 8 q^{86} - 9 q^{87} - 6 q^{88} - 12 q^{89} - 5 q^{91} - 3 q^{92} + 4 q^{93} - q^{96} + 10 q^{97} - 6 q^{98} + 12 q^{99}+O(q^{100})$$ q + q^2 - q^3 + q^4 - q^6 + q^7 + q^8 - 2 * q^9 - 6 * q^11 - q^12 - 5 * q^13 + q^14 + q^16 - 3 * q^17 - 2 * q^18 + q^19 - q^21 - 6 * q^22 - 3 * q^23 - q^24 - 5 * q^26 + 5 * q^27 + q^28 + 9 * q^29 - 4 * q^31 + q^32 + 6 * q^33 - 3 * q^34 - 2 * q^36 - 2 * q^37 + q^38 + 5 * q^39 - q^42 - 8 * q^43 - 6 * q^44 - 3 * q^46 - q^48 - 6 * q^49 + 3 * q^51 - 5 * q^52 + 3 * q^53 + 5 * q^54 + q^56 - q^57 + 9 * q^58 + 9 * q^59 - 10 * q^61 - 4 * q^62 - 2 * q^63 + q^64 + 6 * q^66 - 5 * q^67 - 3 * q^68 + 3 * q^69 - 6 * q^71 - 2 * q^72 + 7 * q^73 - 2 * q^74 + q^76 - 6 * q^77 + 5 * q^78 - 10 * q^79 + q^81 + 6 * q^83 - q^84 - 8 * q^86 - 9 * q^87 - 6 * q^88 - 12 * q^89 - 5 * q^91 - 3 * q^92 + 4 * q^93 - q^96 + 10 * q^97 - 6 * q^98 + 12 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 −1.00000 1.00000 0 −1.00000 1.00000 1.00000 −2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$1$$
$$19$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 950.2.a.d 1
3.b odd 2 1 8550.2.a.m 1
4.b odd 2 1 7600.2.a.n 1
5.b even 2 1 38.2.a.a 1
5.c odd 4 2 950.2.b.b 2
15.d odd 2 1 342.2.a.e 1
20.d odd 2 1 304.2.a.c 1
35.c odd 2 1 1862.2.a.b 1
40.e odd 2 1 1216.2.a.m 1
40.f even 2 1 1216.2.a.e 1
55.d odd 2 1 4598.2.a.p 1
60.h even 2 1 2736.2.a.n 1
65.d even 2 1 6422.2.a.h 1
95.d odd 2 1 722.2.a.e 1
95.h odd 6 2 722.2.c.c 2
95.i even 6 2 722.2.c.e 2
95.o odd 18 6 722.2.e.e 6
95.p even 18 6 722.2.e.f 6
285.b even 2 1 6498.2.a.f 1
380.d even 2 1 5776.2.a.m 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.2.a.a 1 5.b even 2 1
304.2.a.c 1 20.d odd 2 1
342.2.a.e 1 15.d odd 2 1
722.2.a.e 1 95.d odd 2 1
722.2.c.c 2 95.h odd 6 2
722.2.c.e 2 95.i even 6 2
722.2.e.e 6 95.o odd 18 6
722.2.e.f 6 95.p even 18 6
950.2.a.d 1 1.a even 1 1 trivial
950.2.b.b 2 5.c odd 4 2
1216.2.a.e 1 40.f even 2 1
1216.2.a.m 1 40.e odd 2 1
1862.2.a.b 1 35.c odd 2 1
2736.2.a.n 1 60.h even 2 1
4598.2.a.p 1 55.d odd 2 1
5776.2.a.m 1 380.d even 2 1
6422.2.a.h 1 65.d even 2 1
6498.2.a.f 1 285.b even 2 1
7600.2.a.n 1 4.b odd 2 1
8550.2.a.m 1 3.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(950))$$:

 $$T_{3} + 1$$ T3 + 1 $$T_{7} - 1$$ T7 - 1 $$T_{11} + 6$$ T11 + 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T + 1$$
$5$ $$T$$
$7$ $$T - 1$$
$11$ $$T + 6$$
$13$ $$T + 5$$
$17$ $$T + 3$$
$19$ $$T - 1$$
$23$ $$T + 3$$
$29$ $$T - 9$$
$31$ $$T + 4$$
$37$ $$T + 2$$
$41$ $$T$$
$43$ $$T + 8$$
$47$ $$T$$
$53$ $$T - 3$$
$59$ $$T - 9$$
$61$ $$T + 10$$
$67$ $$T + 5$$
$71$ $$T + 6$$
$73$ $$T - 7$$
$79$ $$T + 10$$
$83$ $$T - 6$$
$89$ $$T + 12$$
$97$ $$T - 10$$