# Properties

 Label 950.2.a.b.1.1 Level $950$ Weight $2$ Character 950.1 Self dual yes Analytic conductor $7.586$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [950,2,Mod(1,950)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(950, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("950.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$950 = 2 \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 950.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$7.58578819202$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 38) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 950.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -3.00000 q^{7} -1.00000 q^{8} -2.00000 q^{9} +O(q^{10})$$ $$q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -3.00000 q^{7} -1.00000 q^{8} -2.00000 q^{9} +2.00000 q^{11} +1.00000 q^{12} +1.00000 q^{13} +3.00000 q^{14} +1.00000 q^{16} -3.00000 q^{17} +2.00000 q^{18} -1.00000 q^{19} -3.00000 q^{21} -2.00000 q^{22} +1.00000 q^{23} -1.00000 q^{24} -1.00000 q^{26} -5.00000 q^{27} -3.00000 q^{28} -5.00000 q^{29} -8.00000 q^{31} -1.00000 q^{32} +2.00000 q^{33} +3.00000 q^{34} -2.00000 q^{36} +2.00000 q^{37} +1.00000 q^{38} +1.00000 q^{39} -8.00000 q^{41} +3.00000 q^{42} -4.00000 q^{43} +2.00000 q^{44} -1.00000 q^{46} -8.00000 q^{47} +1.00000 q^{48} +2.00000 q^{49} -3.00000 q^{51} +1.00000 q^{52} +1.00000 q^{53} +5.00000 q^{54} +3.00000 q^{56} -1.00000 q^{57} +5.00000 q^{58} +15.0000 q^{59} +2.00000 q^{61} +8.00000 q^{62} +6.00000 q^{63} +1.00000 q^{64} -2.00000 q^{66} -3.00000 q^{67} -3.00000 q^{68} +1.00000 q^{69} +2.00000 q^{71} +2.00000 q^{72} -9.00000 q^{73} -2.00000 q^{74} -1.00000 q^{76} -6.00000 q^{77} -1.00000 q^{78} -10.0000 q^{79} +1.00000 q^{81} +8.00000 q^{82} +6.00000 q^{83} -3.00000 q^{84} +4.00000 q^{86} -5.00000 q^{87} -2.00000 q^{88} -3.00000 q^{91} +1.00000 q^{92} -8.00000 q^{93} +8.00000 q^{94} -1.00000 q^{96} +2.00000 q^{97} -2.00000 q^{98} -4.00000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.00000 −0.707107
$$3$$ 1.00000 0.577350 0.288675 0.957427i $$-0.406785\pi$$
0.288675 + 0.957427i $$0.406785\pi$$
$$4$$ 1.00000 0.500000
$$5$$ 0 0
$$6$$ −1.00000 −0.408248
$$7$$ −3.00000 −1.13389 −0.566947 0.823754i $$-0.691875\pi$$
−0.566947 + 0.823754i $$0.691875\pi$$
$$8$$ −1.00000 −0.353553
$$9$$ −2.00000 −0.666667
$$10$$ 0 0
$$11$$ 2.00000 0.603023 0.301511 0.953463i $$-0.402509\pi$$
0.301511 + 0.953463i $$0.402509\pi$$
$$12$$ 1.00000 0.288675
$$13$$ 1.00000 0.277350 0.138675 0.990338i $$-0.455716\pi$$
0.138675 + 0.990338i $$0.455716\pi$$
$$14$$ 3.00000 0.801784
$$15$$ 0 0
$$16$$ 1.00000 0.250000
$$17$$ −3.00000 −0.727607 −0.363803 0.931476i $$-0.618522\pi$$
−0.363803 + 0.931476i $$0.618522\pi$$
$$18$$ 2.00000 0.471405
$$19$$ −1.00000 −0.229416
$$20$$ 0 0
$$21$$ −3.00000 −0.654654
$$22$$ −2.00000 −0.426401
$$23$$ 1.00000 0.208514 0.104257 0.994550i $$-0.466753\pi$$
0.104257 + 0.994550i $$0.466753\pi$$
$$24$$ −1.00000 −0.204124
$$25$$ 0 0
$$26$$ −1.00000 −0.196116
$$27$$ −5.00000 −0.962250
$$28$$ −3.00000 −0.566947
$$29$$ −5.00000 −0.928477 −0.464238 0.885710i $$-0.653672\pi$$
−0.464238 + 0.885710i $$0.653672\pi$$
$$30$$ 0 0
$$31$$ −8.00000 −1.43684 −0.718421 0.695608i $$-0.755135\pi$$
−0.718421 + 0.695608i $$0.755135\pi$$
$$32$$ −1.00000 −0.176777
$$33$$ 2.00000 0.348155
$$34$$ 3.00000 0.514496
$$35$$ 0 0
$$36$$ −2.00000 −0.333333
$$37$$ 2.00000 0.328798 0.164399 0.986394i $$-0.447432\pi$$
0.164399 + 0.986394i $$0.447432\pi$$
$$38$$ 1.00000 0.162221
$$39$$ 1.00000 0.160128
$$40$$ 0 0
$$41$$ −8.00000 −1.24939 −0.624695 0.780869i $$-0.714777\pi$$
−0.624695 + 0.780869i $$0.714777\pi$$
$$42$$ 3.00000 0.462910
$$43$$ −4.00000 −0.609994 −0.304997 0.952353i $$-0.598656\pi$$
−0.304997 + 0.952353i $$0.598656\pi$$
$$44$$ 2.00000 0.301511
$$45$$ 0 0
$$46$$ −1.00000 −0.147442
$$47$$ −8.00000 −1.16692 −0.583460 0.812142i $$-0.698301\pi$$
−0.583460 + 0.812142i $$0.698301\pi$$
$$48$$ 1.00000 0.144338
$$49$$ 2.00000 0.285714
$$50$$ 0 0
$$51$$ −3.00000 −0.420084
$$52$$ 1.00000 0.138675
$$53$$ 1.00000 0.137361 0.0686803 0.997639i $$-0.478121\pi$$
0.0686803 + 0.997639i $$0.478121\pi$$
$$54$$ 5.00000 0.680414
$$55$$ 0 0
$$56$$ 3.00000 0.400892
$$57$$ −1.00000 −0.132453
$$58$$ 5.00000 0.656532
$$59$$ 15.0000 1.95283 0.976417 0.215894i $$-0.0692665\pi$$
0.976417 + 0.215894i $$0.0692665\pi$$
$$60$$ 0 0
$$61$$ 2.00000 0.256074 0.128037 0.991769i $$-0.459132\pi$$
0.128037 + 0.991769i $$0.459132\pi$$
$$62$$ 8.00000 1.01600
$$63$$ 6.00000 0.755929
$$64$$ 1.00000 0.125000
$$65$$ 0 0
$$66$$ −2.00000 −0.246183
$$67$$ −3.00000 −0.366508 −0.183254 0.983066i $$-0.558663\pi$$
−0.183254 + 0.983066i $$0.558663\pi$$
$$68$$ −3.00000 −0.363803
$$69$$ 1.00000 0.120386
$$70$$ 0 0
$$71$$ 2.00000 0.237356 0.118678 0.992933i $$-0.462134\pi$$
0.118678 + 0.992933i $$0.462134\pi$$
$$72$$ 2.00000 0.235702
$$73$$ −9.00000 −1.05337 −0.526685 0.850060i $$-0.676565\pi$$
−0.526685 + 0.850060i $$0.676565\pi$$
$$74$$ −2.00000 −0.232495
$$75$$ 0 0
$$76$$ −1.00000 −0.114708
$$77$$ −6.00000 −0.683763
$$78$$ −1.00000 −0.113228
$$79$$ −10.0000 −1.12509 −0.562544 0.826767i $$-0.690177\pi$$
−0.562544 + 0.826767i $$0.690177\pi$$
$$80$$ 0 0
$$81$$ 1.00000 0.111111
$$82$$ 8.00000 0.883452
$$83$$ 6.00000 0.658586 0.329293 0.944228i $$-0.393190\pi$$
0.329293 + 0.944228i $$0.393190\pi$$
$$84$$ −3.00000 −0.327327
$$85$$ 0 0
$$86$$ 4.00000 0.431331
$$87$$ −5.00000 −0.536056
$$88$$ −2.00000 −0.213201
$$89$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$90$$ 0 0
$$91$$ −3.00000 −0.314485
$$92$$ 1.00000 0.104257
$$93$$ −8.00000 −0.829561
$$94$$ 8.00000 0.825137
$$95$$ 0 0
$$96$$ −1.00000 −0.102062
$$97$$ 2.00000 0.203069 0.101535 0.994832i $$-0.467625\pi$$
0.101535 + 0.994832i $$0.467625\pi$$
$$98$$ −2.00000 −0.202031
$$99$$ −4.00000 −0.402015
$$100$$ 0 0
$$101$$ 2.00000 0.199007 0.0995037 0.995037i $$-0.468274\pi$$
0.0995037 + 0.995037i $$0.468274\pi$$
$$102$$ 3.00000 0.297044
$$103$$ 6.00000 0.591198 0.295599 0.955312i $$-0.404481\pi$$
0.295599 + 0.955312i $$0.404481\pi$$
$$104$$ −1.00000 −0.0980581
$$105$$ 0 0
$$106$$ −1.00000 −0.0971286
$$107$$ 7.00000 0.676716 0.338358 0.941018i $$-0.390129\pi$$
0.338358 + 0.941018i $$0.390129\pi$$
$$108$$ −5.00000 −0.481125
$$109$$ −15.0000 −1.43674 −0.718370 0.695662i $$-0.755111\pi$$
−0.718370 + 0.695662i $$0.755111\pi$$
$$110$$ 0 0
$$111$$ 2.00000 0.189832
$$112$$ −3.00000 −0.283473
$$113$$ −14.0000 −1.31701 −0.658505 0.752577i $$-0.728811\pi$$
−0.658505 + 0.752577i $$0.728811\pi$$
$$114$$ 1.00000 0.0936586
$$115$$ 0 0
$$116$$ −5.00000 −0.464238
$$117$$ −2.00000 −0.184900
$$118$$ −15.0000 −1.38086
$$119$$ 9.00000 0.825029
$$120$$ 0 0
$$121$$ −7.00000 −0.636364
$$122$$ −2.00000 −0.181071
$$123$$ −8.00000 −0.721336
$$124$$ −8.00000 −0.718421
$$125$$ 0 0
$$126$$ −6.00000 −0.534522
$$127$$ −18.0000 −1.59724 −0.798621 0.601834i $$-0.794437\pi$$
−0.798621 + 0.601834i $$0.794437\pi$$
$$128$$ −1.00000 −0.0883883
$$129$$ −4.00000 −0.352180
$$130$$ 0 0
$$131$$ 12.0000 1.04844 0.524222 0.851581i $$-0.324356\pi$$
0.524222 + 0.851581i $$0.324356\pi$$
$$132$$ 2.00000 0.174078
$$133$$ 3.00000 0.260133
$$134$$ 3.00000 0.259161
$$135$$ 0 0
$$136$$ 3.00000 0.257248
$$137$$ 17.0000 1.45241 0.726204 0.687479i $$-0.241283\pi$$
0.726204 + 0.687479i $$0.241283\pi$$
$$138$$ −1.00000 −0.0851257
$$139$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$140$$ 0 0
$$141$$ −8.00000 −0.673722
$$142$$ −2.00000 −0.167836
$$143$$ 2.00000 0.167248
$$144$$ −2.00000 −0.166667
$$145$$ 0 0
$$146$$ 9.00000 0.744845
$$147$$ 2.00000 0.164957
$$148$$ 2.00000 0.164399
$$149$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$150$$ 0 0
$$151$$ 2.00000 0.162758 0.0813788 0.996683i $$-0.474068\pi$$
0.0813788 + 0.996683i $$0.474068\pi$$
$$152$$ 1.00000 0.0811107
$$153$$ 6.00000 0.485071
$$154$$ 6.00000 0.483494
$$155$$ 0 0
$$156$$ 1.00000 0.0800641
$$157$$ 2.00000 0.159617 0.0798087 0.996810i $$-0.474569\pi$$
0.0798087 + 0.996810i $$0.474569\pi$$
$$158$$ 10.0000 0.795557
$$159$$ 1.00000 0.0793052
$$160$$ 0 0
$$161$$ −3.00000 −0.236433
$$162$$ −1.00000 −0.0785674
$$163$$ 16.0000 1.25322 0.626608 0.779334i $$-0.284443\pi$$
0.626608 + 0.779334i $$0.284443\pi$$
$$164$$ −8.00000 −0.624695
$$165$$ 0 0
$$166$$ −6.00000 −0.465690
$$167$$ 12.0000 0.928588 0.464294 0.885681i $$-0.346308\pi$$
0.464294 + 0.885681i $$0.346308\pi$$
$$168$$ 3.00000 0.231455
$$169$$ −12.0000 −0.923077
$$170$$ 0 0
$$171$$ 2.00000 0.152944
$$172$$ −4.00000 −0.304997
$$173$$ 6.00000 0.456172 0.228086 0.973641i $$-0.426753\pi$$
0.228086 + 0.973641i $$0.426753\pi$$
$$174$$ 5.00000 0.379049
$$175$$ 0 0
$$176$$ 2.00000 0.150756
$$177$$ 15.0000 1.12747
$$178$$ 0 0
$$179$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$180$$ 0 0
$$181$$ 22.0000 1.63525 0.817624 0.575753i $$-0.195291\pi$$
0.817624 + 0.575753i $$0.195291\pi$$
$$182$$ 3.00000 0.222375
$$183$$ 2.00000 0.147844
$$184$$ −1.00000 −0.0737210
$$185$$ 0 0
$$186$$ 8.00000 0.586588
$$187$$ −6.00000 −0.438763
$$188$$ −8.00000 −0.583460
$$189$$ 15.0000 1.09109
$$190$$ 0 0
$$191$$ 7.00000 0.506502 0.253251 0.967401i $$-0.418500\pi$$
0.253251 + 0.967401i $$0.418500\pi$$
$$192$$ 1.00000 0.0721688
$$193$$ 6.00000 0.431889 0.215945 0.976406i $$-0.430717\pi$$
0.215945 + 0.976406i $$0.430717\pi$$
$$194$$ −2.00000 −0.143592
$$195$$ 0 0
$$196$$ 2.00000 0.142857
$$197$$ −8.00000 −0.569976 −0.284988 0.958531i $$-0.591990\pi$$
−0.284988 + 0.958531i $$0.591990\pi$$
$$198$$ 4.00000 0.284268
$$199$$ −25.0000 −1.77220 −0.886102 0.463491i $$-0.846597\pi$$
−0.886102 + 0.463491i $$0.846597\pi$$
$$200$$ 0 0
$$201$$ −3.00000 −0.211604
$$202$$ −2.00000 −0.140720
$$203$$ 15.0000 1.05279
$$204$$ −3.00000 −0.210042
$$205$$ 0 0
$$206$$ −6.00000 −0.418040
$$207$$ −2.00000 −0.139010
$$208$$ 1.00000 0.0693375
$$209$$ −2.00000 −0.138343
$$210$$ 0 0
$$211$$ 27.0000 1.85876 0.929378 0.369129i $$-0.120344\pi$$
0.929378 + 0.369129i $$0.120344\pi$$
$$212$$ 1.00000 0.0686803
$$213$$ 2.00000 0.137038
$$214$$ −7.00000 −0.478510
$$215$$ 0 0
$$216$$ 5.00000 0.340207
$$217$$ 24.0000 1.62923
$$218$$ 15.0000 1.01593
$$219$$ −9.00000 −0.608164
$$220$$ 0 0
$$221$$ −3.00000 −0.201802
$$222$$ −2.00000 −0.134231
$$223$$ −14.0000 −0.937509 −0.468755 0.883328i $$-0.655297\pi$$
−0.468755 + 0.883328i $$0.655297\pi$$
$$224$$ 3.00000 0.200446
$$225$$ 0 0
$$226$$ 14.0000 0.931266
$$227$$ 17.0000 1.12833 0.564165 0.825662i $$-0.309198\pi$$
0.564165 + 0.825662i $$0.309198\pi$$
$$228$$ −1.00000 −0.0662266
$$229$$ −10.0000 −0.660819 −0.330409 0.943838i $$-0.607187\pi$$
−0.330409 + 0.943838i $$0.607187\pi$$
$$230$$ 0 0
$$231$$ −6.00000 −0.394771
$$232$$ 5.00000 0.328266
$$233$$ 6.00000 0.393073 0.196537 0.980497i $$-0.437031\pi$$
0.196537 + 0.980497i $$0.437031\pi$$
$$234$$ 2.00000 0.130744
$$235$$ 0 0
$$236$$ 15.0000 0.976417
$$237$$ −10.0000 −0.649570
$$238$$ −9.00000 −0.583383
$$239$$ 15.0000 0.970269 0.485135 0.874439i $$-0.338771\pi$$
0.485135 + 0.874439i $$0.338771\pi$$
$$240$$ 0 0
$$241$$ −8.00000 −0.515325 −0.257663 0.966235i $$-0.582952\pi$$
−0.257663 + 0.966235i $$0.582952\pi$$
$$242$$ 7.00000 0.449977
$$243$$ 16.0000 1.02640
$$244$$ 2.00000 0.128037
$$245$$ 0 0
$$246$$ 8.00000 0.510061
$$247$$ −1.00000 −0.0636285
$$248$$ 8.00000 0.508001
$$249$$ 6.00000 0.380235
$$250$$ 0 0
$$251$$ 2.00000 0.126239 0.0631194 0.998006i $$-0.479895\pi$$
0.0631194 + 0.998006i $$0.479895\pi$$
$$252$$ 6.00000 0.377964
$$253$$ 2.00000 0.125739
$$254$$ 18.0000 1.12942
$$255$$ 0 0
$$256$$ 1.00000 0.0625000
$$257$$ −8.00000 −0.499026 −0.249513 0.968371i $$-0.580271\pi$$
−0.249513 + 0.968371i $$0.580271\pi$$
$$258$$ 4.00000 0.249029
$$259$$ −6.00000 −0.372822
$$260$$ 0 0
$$261$$ 10.0000 0.618984
$$262$$ −12.0000 −0.741362
$$263$$ −24.0000 −1.47990 −0.739952 0.672660i $$-0.765152\pi$$
−0.739952 + 0.672660i $$0.765152\pi$$
$$264$$ −2.00000 −0.123091
$$265$$ 0 0
$$266$$ −3.00000 −0.183942
$$267$$ 0 0
$$268$$ −3.00000 −0.183254
$$269$$ 30.0000 1.82913 0.914566 0.404436i $$-0.132532\pi$$
0.914566 + 0.404436i $$0.132532\pi$$
$$270$$ 0 0
$$271$$ 7.00000 0.425220 0.212610 0.977137i $$-0.431804\pi$$
0.212610 + 0.977137i $$0.431804\pi$$
$$272$$ −3.00000 −0.181902
$$273$$ −3.00000 −0.181568
$$274$$ −17.0000 −1.02701
$$275$$ 0 0
$$276$$ 1.00000 0.0601929
$$277$$ −28.0000 −1.68236 −0.841178 0.540758i $$-0.818138\pi$$
−0.841178 + 0.540758i $$0.818138\pi$$
$$278$$ 0 0
$$279$$ 16.0000 0.957895
$$280$$ 0 0
$$281$$ −8.00000 −0.477240 −0.238620 0.971113i $$-0.576695\pi$$
−0.238620 + 0.971113i $$0.576695\pi$$
$$282$$ 8.00000 0.476393
$$283$$ 6.00000 0.356663 0.178331 0.983970i $$-0.442930\pi$$
0.178331 + 0.983970i $$0.442930\pi$$
$$284$$ 2.00000 0.118678
$$285$$ 0 0
$$286$$ −2.00000 −0.118262
$$287$$ 24.0000 1.41668
$$288$$ 2.00000 0.117851
$$289$$ −8.00000 −0.470588
$$290$$ 0 0
$$291$$ 2.00000 0.117242
$$292$$ −9.00000 −0.526685
$$293$$ −9.00000 −0.525786 −0.262893 0.964825i $$-0.584677\pi$$
−0.262893 + 0.964825i $$0.584677\pi$$
$$294$$ −2.00000 −0.116642
$$295$$ 0 0
$$296$$ −2.00000 −0.116248
$$297$$ −10.0000 −0.580259
$$298$$ 0 0
$$299$$ 1.00000 0.0578315
$$300$$ 0 0
$$301$$ 12.0000 0.691669
$$302$$ −2.00000 −0.115087
$$303$$ 2.00000 0.114897
$$304$$ −1.00000 −0.0573539
$$305$$ 0 0
$$306$$ −6.00000 −0.342997
$$307$$ 12.0000 0.684876 0.342438 0.939540i $$-0.388747\pi$$
0.342438 + 0.939540i $$0.388747\pi$$
$$308$$ −6.00000 −0.341882
$$309$$ 6.00000 0.341328
$$310$$ 0 0
$$311$$ 7.00000 0.396934 0.198467 0.980108i $$-0.436404\pi$$
0.198467 + 0.980108i $$0.436404\pi$$
$$312$$ −1.00000 −0.0566139
$$313$$ −29.0000 −1.63918 −0.819588 0.572953i $$-0.805798\pi$$
−0.819588 + 0.572953i $$0.805798\pi$$
$$314$$ −2.00000 −0.112867
$$315$$ 0 0
$$316$$ −10.0000 −0.562544
$$317$$ 27.0000 1.51647 0.758236 0.651981i $$-0.226062\pi$$
0.758236 + 0.651981i $$0.226062\pi$$
$$318$$ −1.00000 −0.0560772
$$319$$ −10.0000 −0.559893
$$320$$ 0 0
$$321$$ 7.00000 0.390702
$$322$$ 3.00000 0.167183
$$323$$ 3.00000 0.166924
$$324$$ 1.00000 0.0555556
$$325$$ 0 0
$$326$$ −16.0000 −0.886158
$$327$$ −15.0000 −0.829502
$$328$$ 8.00000 0.441726
$$329$$ 24.0000 1.32316
$$330$$ 0 0
$$331$$ 17.0000 0.934405 0.467202 0.884150i $$-0.345262\pi$$
0.467202 + 0.884150i $$0.345262\pi$$
$$332$$ 6.00000 0.329293
$$333$$ −4.00000 −0.219199
$$334$$ −12.0000 −0.656611
$$335$$ 0 0
$$336$$ −3.00000 −0.163663
$$337$$ 32.0000 1.74315 0.871576 0.490261i $$-0.163099\pi$$
0.871576 + 0.490261i $$0.163099\pi$$
$$338$$ 12.0000 0.652714
$$339$$ −14.0000 −0.760376
$$340$$ 0 0
$$341$$ −16.0000 −0.866449
$$342$$ −2.00000 −0.108148
$$343$$ 15.0000 0.809924
$$344$$ 4.00000 0.215666
$$345$$ 0 0
$$346$$ −6.00000 −0.322562
$$347$$ 2.00000 0.107366 0.0536828 0.998558i $$-0.482904\pi$$
0.0536828 + 0.998558i $$0.482904\pi$$
$$348$$ −5.00000 −0.268028
$$349$$ 10.0000 0.535288 0.267644 0.963518i $$-0.413755\pi$$
0.267644 + 0.963518i $$0.413755\pi$$
$$350$$ 0 0
$$351$$ −5.00000 −0.266880
$$352$$ −2.00000 −0.106600
$$353$$ −9.00000 −0.479022 −0.239511 0.970894i $$-0.576987\pi$$
−0.239511 + 0.970894i $$0.576987\pi$$
$$354$$ −15.0000 −0.797241
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 9.00000 0.476331
$$358$$ 0 0
$$359$$ −15.0000 −0.791670 −0.395835 0.918322i $$-0.629545\pi$$
−0.395835 + 0.918322i $$0.629545\pi$$
$$360$$ 0 0
$$361$$ 1.00000 0.0526316
$$362$$ −22.0000 −1.15629
$$363$$ −7.00000 −0.367405
$$364$$ −3.00000 −0.157243
$$365$$ 0 0
$$366$$ −2.00000 −0.104542
$$367$$ −28.0000 −1.46159 −0.730794 0.682598i $$-0.760850\pi$$
−0.730794 + 0.682598i $$0.760850\pi$$
$$368$$ 1.00000 0.0521286
$$369$$ 16.0000 0.832927
$$370$$ 0 0
$$371$$ −3.00000 −0.155752
$$372$$ −8.00000 −0.414781
$$373$$ −29.0000 −1.50156 −0.750782 0.660551i $$-0.770323\pi$$
−0.750782 + 0.660551i $$0.770323\pi$$
$$374$$ 6.00000 0.310253
$$375$$ 0 0
$$376$$ 8.00000 0.412568
$$377$$ −5.00000 −0.257513
$$378$$ −15.0000 −0.771517
$$379$$ 15.0000 0.770498 0.385249 0.922813i $$-0.374116\pi$$
0.385249 + 0.922813i $$0.374116\pi$$
$$380$$ 0 0
$$381$$ −18.0000 −0.922168
$$382$$ −7.00000 −0.358151
$$383$$ 26.0000 1.32854 0.664269 0.747494i $$-0.268743\pi$$
0.664269 + 0.747494i $$0.268743\pi$$
$$384$$ −1.00000 −0.0510310
$$385$$ 0 0
$$386$$ −6.00000 −0.305392
$$387$$ 8.00000 0.406663
$$388$$ 2.00000 0.101535
$$389$$ −30.0000 −1.52106 −0.760530 0.649303i $$-0.775061\pi$$
−0.760530 + 0.649303i $$0.775061\pi$$
$$390$$ 0 0
$$391$$ −3.00000 −0.151717
$$392$$ −2.00000 −0.101015
$$393$$ 12.0000 0.605320
$$394$$ 8.00000 0.403034
$$395$$ 0 0
$$396$$ −4.00000 −0.201008
$$397$$ −8.00000 −0.401508 −0.200754 0.979642i $$-0.564339\pi$$
−0.200754 + 0.979642i $$0.564339\pi$$
$$398$$ 25.0000 1.25314
$$399$$ 3.00000 0.150188
$$400$$ 0 0
$$401$$ −8.00000 −0.399501 −0.199750 0.979847i $$-0.564013\pi$$
−0.199750 + 0.979847i $$0.564013\pi$$
$$402$$ 3.00000 0.149626
$$403$$ −8.00000 −0.398508
$$404$$ 2.00000 0.0995037
$$405$$ 0 0
$$406$$ −15.0000 −0.744438
$$407$$ 4.00000 0.198273
$$408$$ 3.00000 0.148522
$$409$$ −20.0000 −0.988936 −0.494468 0.869196i $$-0.664637\pi$$
−0.494468 + 0.869196i $$0.664637\pi$$
$$410$$ 0 0
$$411$$ 17.0000 0.838548
$$412$$ 6.00000 0.295599
$$413$$ −45.0000 −2.21431
$$414$$ 2.00000 0.0982946
$$415$$ 0 0
$$416$$ −1.00000 −0.0490290
$$417$$ 0 0
$$418$$ 2.00000 0.0978232
$$419$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$420$$ 0 0
$$421$$ −13.0000 −0.633581 −0.316791 0.948495i $$-0.602605\pi$$
−0.316791 + 0.948495i $$0.602605\pi$$
$$422$$ −27.0000 −1.31434
$$423$$ 16.0000 0.777947
$$424$$ −1.00000 −0.0485643
$$425$$ 0 0
$$426$$ −2.00000 −0.0969003
$$427$$ −6.00000 −0.290360
$$428$$ 7.00000 0.338358
$$429$$ 2.00000 0.0965609
$$430$$ 0 0
$$431$$ −18.0000 −0.867029 −0.433515 0.901146i $$-0.642727\pi$$
−0.433515 + 0.901146i $$0.642727\pi$$
$$432$$ −5.00000 −0.240563
$$433$$ −14.0000 −0.672797 −0.336399 0.941720i $$-0.609209\pi$$
−0.336399 + 0.941720i $$0.609209\pi$$
$$434$$ −24.0000 −1.15204
$$435$$ 0 0
$$436$$ −15.0000 −0.718370
$$437$$ −1.00000 −0.0478365
$$438$$ 9.00000 0.430037
$$439$$ 20.0000 0.954548 0.477274 0.878755i $$-0.341625\pi$$
0.477274 + 0.878755i $$0.341625\pi$$
$$440$$ 0 0
$$441$$ −4.00000 −0.190476
$$442$$ 3.00000 0.142695
$$443$$ 26.0000 1.23530 0.617649 0.786454i $$-0.288085\pi$$
0.617649 + 0.786454i $$0.288085\pi$$
$$444$$ 2.00000 0.0949158
$$445$$ 0 0
$$446$$ 14.0000 0.662919
$$447$$ 0 0
$$448$$ −3.00000 −0.141737
$$449$$ 10.0000 0.471929 0.235965 0.971762i $$-0.424175\pi$$
0.235965 + 0.971762i $$0.424175\pi$$
$$450$$ 0 0
$$451$$ −16.0000 −0.753411
$$452$$ −14.0000 −0.658505
$$453$$ 2.00000 0.0939682
$$454$$ −17.0000 −0.797850
$$455$$ 0 0
$$456$$ 1.00000 0.0468293
$$457$$ 7.00000 0.327446 0.163723 0.986506i $$-0.447650\pi$$
0.163723 + 0.986506i $$0.447650\pi$$
$$458$$ 10.0000 0.467269
$$459$$ 15.0000 0.700140
$$460$$ 0 0
$$461$$ −28.0000 −1.30409 −0.652045 0.758180i $$-0.726089\pi$$
−0.652045 + 0.758180i $$0.726089\pi$$
$$462$$ 6.00000 0.279145
$$463$$ −4.00000 −0.185896 −0.0929479 0.995671i $$-0.529629\pi$$
−0.0929479 + 0.995671i $$0.529629\pi$$
$$464$$ −5.00000 −0.232119
$$465$$ 0 0
$$466$$ −6.00000 −0.277945
$$467$$ 2.00000 0.0925490 0.0462745 0.998929i $$-0.485265\pi$$
0.0462745 + 0.998929i $$0.485265\pi$$
$$468$$ −2.00000 −0.0924500
$$469$$ 9.00000 0.415581
$$470$$ 0 0
$$471$$ 2.00000 0.0921551
$$472$$ −15.0000 −0.690431
$$473$$ −8.00000 −0.367840
$$474$$ 10.0000 0.459315
$$475$$ 0 0
$$476$$ 9.00000 0.412514
$$477$$ −2.00000 −0.0915737
$$478$$ −15.0000 −0.686084
$$479$$ −20.0000 −0.913823 −0.456912 0.889512i $$-0.651044\pi$$
−0.456912 + 0.889512i $$0.651044\pi$$
$$480$$ 0 0
$$481$$ 2.00000 0.0911922
$$482$$ 8.00000 0.364390
$$483$$ −3.00000 −0.136505
$$484$$ −7.00000 −0.318182
$$485$$ 0 0
$$486$$ −16.0000 −0.725775
$$487$$ 2.00000 0.0906287 0.0453143 0.998973i $$-0.485571\pi$$
0.0453143 + 0.998973i $$0.485571\pi$$
$$488$$ −2.00000 −0.0905357
$$489$$ 16.0000 0.723545
$$490$$ 0 0
$$491$$ −28.0000 −1.26362 −0.631811 0.775122i $$-0.717688\pi$$
−0.631811 + 0.775122i $$0.717688\pi$$
$$492$$ −8.00000 −0.360668
$$493$$ 15.0000 0.675566
$$494$$ 1.00000 0.0449921
$$495$$ 0 0
$$496$$ −8.00000 −0.359211
$$497$$ −6.00000 −0.269137
$$498$$ −6.00000 −0.268866
$$499$$ 40.0000 1.79065 0.895323 0.445418i $$-0.146945\pi$$
0.895323 + 0.445418i $$0.146945\pi$$
$$500$$ 0 0
$$501$$ 12.0000 0.536120
$$502$$ −2.00000 −0.0892644
$$503$$ −39.0000 −1.73892 −0.869462 0.494000i $$-0.835534\pi$$
−0.869462 + 0.494000i $$0.835534\pi$$
$$504$$ −6.00000 −0.267261
$$505$$ 0 0
$$506$$ −2.00000 −0.0889108
$$507$$ −12.0000 −0.532939
$$508$$ −18.0000 −0.798621
$$509$$ −30.0000 −1.32973 −0.664863 0.746965i $$-0.731510\pi$$
−0.664863 + 0.746965i $$0.731510\pi$$
$$510$$ 0 0
$$511$$ 27.0000 1.19441
$$512$$ −1.00000 −0.0441942
$$513$$ 5.00000 0.220755
$$514$$ 8.00000 0.352865
$$515$$ 0 0
$$516$$ −4.00000 −0.176090
$$517$$ −16.0000 −0.703679
$$518$$ 6.00000 0.263625
$$519$$ 6.00000 0.263371
$$520$$ 0 0
$$521$$ −28.0000 −1.22670 −0.613351 0.789810i $$-0.710179\pi$$
−0.613351 + 0.789810i $$0.710179\pi$$
$$522$$ −10.0000 −0.437688
$$523$$ −29.0000 −1.26808 −0.634041 0.773300i $$-0.718605\pi$$
−0.634041 + 0.773300i $$0.718605\pi$$
$$524$$ 12.0000 0.524222
$$525$$ 0 0
$$526$$ 24.0000 1.04645
$$527$$ 24.0000 1.04546
$$528$$ 2.00000 0.0870388
$$529$$ −22.0000 −0.956522
$$530$$ 0 0
$$531$$ −30.0000 −1.30189
$$532$$ 3.00000 0.130066
$$533$$ −8.00000 −0.346518
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 3.00000 0.129580
$$537$$ 0 0
$$538$$ −30.0000 −1.29339
$$539$$ 4.00000 0.172292
$$540$$ 0 0
$$541$$ 2.00000 0.0859867 0.0429934 0.999075i $$-0.486311\pi$$
0.0429934 + 0.999075i $$0.486311\pi$$
$$542$$ −7.00000 −0.300676
$$543$$ 22.0000 0.944110
$$544$$ 3.00000 0.128624
$$545$$ 0 0
$$546$$ 3.00000 0.128388
$$547$$ −28.0000 −1.19719 −0.598597 0.801050i $$-0.704275\pi$$
−0.598597 + 0.801050i $$0.704275\pi$$
$$548$$ 17.0000 0.726204
$$549$$ −4.00000 −0.170716
$$550$$ 0 0
$$551$$ 5.00000 0.213007
$$552$$ −1.00000 −0.0425628
$$553$$ 30.0000 1.27573
$$554$$ 28.0000 1.18961
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −28.0000 −1.18640 −0.593199 0.805056i $$-0.702135\pi$$
−0.593199 + 0.805056i $$0.702135\pi$$
$$558$$ −16.0000 −0.677334
$$559$$ −4.00000 −0.169182
$$560$$ 0 0
$$561$$ −6.00000 −0.253320
$$562$$ 8.00000 0.337460
$$563$$ 36.0000 1.51722 0.758610 0.651546i $$-0.225879\pi$$
0.758610 + 0.651546i $$0.225879\pi$$
$$564$$ −8.00000 −0.336861
$$565$$ 0 0
$$566$$ −6.00000 −0.252199
$$567$$ −3.00000 −0.125988
$$568$$ −2.00000 −0.0839181
$$569$$ 40.0000 1.67689 0.838444 0.544988i $$-0.183466\pi$$
0.838444 + 0.544988i $$0.183466\pi$$
$$570$$ 0 0
$$571$$ −28.0000 −1.17176 −0.585882 0.810397i $$-0.699252\pi$$
−0.585882 + 0.810397i $$0.699252\pi$$
$$572$$ 2.00000 0.0836242
$$573$$ 7.00000 0.292429
$$574$$ −24.0000 −1.00174
$$575$$ 0 0
$$576$$ −2.00000 −0.0833333
$$577$$ 37.0000 1.54033 0.770165 0.637845i $$-0.220174\pi$$
0.770165 + 0.637845i $$0.220174\pi$$
$$578$$ 8.00000 0.332756
$$579$$ 6.00000 0.249351
$$580$$ 0 0
$$581$$ −18.0000 −0.746766
$$582$$ −2.00000 −0.0829027
$$583$$ 2.00000 0.0828315
$$584$$ 9.00000 0.372423
$$585$$ 0 0
$$586$$ 9.00000 0.371787
$$587$$ 12.0000 0.495293 0.247647 0.968850i $$-0.420343\pi$$
0.247647 + 0.968850i $$0.420343\pi$$
$$588$$ 2.00000 0.0824786
$$589$$ 8.00000 0.329634
$$590$$ 0 0
$$591$$ −8.00000 −0.329076
$$592$$ 2.00000 0.0821995
$$593$$ −34.0000 −1.39621 −0.698106 0.715994i $$-0.745974\pi$$
−0.698106 + 0.715994i $$0.745974\pi$$
$$594$$ 10.0000 0.410305
$$595$$ 0 0
$$596$$ 0 0
$$597$$ −25.0000 −1.02318
$$598$$ −1.00000 −0.0408930
$$599$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$600$$ 0 0
$$601$$ −8.00000 −0.326327 −0.163163 0.986599i $$-0.552170\pi$$
−0.163163 + 0.986599i $$0.552170\pi$$
$$602$$ −12.0000 −0.489083
$$603$$ 6.00000 0.244339
$$604$$ 2.00000 0.0813788
$$605$$ 0 0
$$606$$ −2.00000 −0.0812444
$$607$$ 22.0000 0.892952 0.446476 0.894795i $$-0.352679\pi$$
0.446476 + 0.894795i $$0.352679\pi$$
$$608$$ 1.00000 0.0405554
$$609$$ 15.0000 0.607831
$$610$$ 0 0
$$611$$ −8.00000 −0.323645
$$612$$ 6.00000 0.242536
$$613$$ −34.0000 −1.37325 −0.686624 0.727013i $$-0.740908\pi$$
−0.686624 + 0.727013i $$0.740908\pi$$
$$614$$ −12.0000 −0.484281
$$615$$ 0 0
$$616$$ 6.00000 0.241747
$$617$$ −18.0000 −0.724653 −0.362326 0.932051i $$-0.618017\pi$$
−0.362326 + 0.932051i $$0.618017\pi$$
$$618$$ −6.00000 −0.241355
$$619$$ 10.0000 0.401934 0.200967 0.979598i $$-0.435592\pi$$
0.200967 + 0.979598i $$0.435592\pi$$
$$620$$ 0 0
$$621$$ −5.00000 −0.200643
$$622$$ −7.00000 −0.280674
$$623$$ 0 0
$$624$$ 1.00000 0.0400320
$$625$$ 0 0
$$626$$ 29.0000 1.15907
$$627$$ −2.00000 −0.0798723
$$628$$ 2.00000 0.0798087
$$629$$ −6.00000 −0.239236
$$630$$ 0 0
$$631$$ 32.0000 1.27390 0.636950 0.770905i $$-0.280196\pi$$
0.636950 + 0.770905i $$0.280196\pi$$
$$632$$ 10.0000 0.397779
$$633$$ 27.0000 1.07315
$$634$$ −27.0000 −1.07231
$$635$$ 0 0
$$636$$ 1.00000 0.0396526
$$637$$ 2.00000 0.0792429
$$638$$ 10.0000 0.395904
$$639$$ −4.00000 −0.158238
$$640$$ 0 0
$$641$$ 42.0000 1.65890 0.829450 0.558581i $$-0.188654\pi$$
0.829450 + 0.558581i $$0.188654\pi$$
$$642$$ −7.00000 −0.276268
$$643$$ 26.0000 1.02534 0.512670 0.858586i $$-0.328656\pi$$
0.512670 + 0.858586i $$0.328656\pi$$
$$644$$ −3.00000 −0.118217
$$645$$ 0 0
$$646$$ −3.00000 −0.118033
$$647$$ −23.0000 −0.904223 −0.452112 0.891961i $$-0.649329\pi$$
−0.452112 + 0.891961i $$0.649329\pi$$
$$648$$ −1.00000 −0.0392837
$$649$$ 30.0000 1.17760
$$650$$ 0 0
$$651$$ 24.0000 0.940634
$$652$$ 16.0000 0.626608
$$653$$ 36.0000 1.40879 0.704394 0.709809i $$-0.251219\pi$$
0.704394 + 0.709809i $$0.251219\pi$$
$$654$$ 15.0000 0.586546
$$655$$ 0 0
$$656$$ −8.00000 −0.312348
$$657$$ 18.0000 0.702247
$$658$$ −24.0000 −0.935617
$$659$$ 5.00000 0.194772 0.0973862 0.995247i $$-0.468952\pi$$
0.0973862 + 0.995247i $$0.468952\pi$$
$$660$$ 0 0
$$661$$ −23.0000 −0.894596 −0.447298 0.894385i $$-0.647614\pi$$
−0.447298 + 0.894385i $$0.647614\pi$$
$$662$$ −17.0000 −0.660724
$$663$$ −3.00000 −0.116510
$$664$$ −6.00000 −0.232845
$$665$$ 0 0
$$666$$ 4.00000 0.154997
$$667$$ −5.00000 −0.193601
$$668$$ 12.0000 0.464294
$$669$$ −14.0000 −0.541271
$$670$$ 0 0
$$671$$ 4.00000 0.154418
$$672$$ 3.00000 0.115728
$$673$$ −44.0000 −1.69608 −0.848038 0.529936i $$-0.822216\pi$$
−0.848038 + 0.529936i $$0.822216\pi$$
$$674$$ −32.0000 −1.23259
$$675$$ 0 0
$$676$$ −12.0000 −0.461538
$$677$$ −13.0000 −0.499631 −0.249815 0.968294i $$-0.580370\pi$$
−0.249815 + 0.968294i $$0.580370\pi$$
$$678$$ 14.0000 0.537667
$$679$$ −6.00000 −0.230259
$$680$$ 0 0
$$681$$ 17.0000 0.651441
$$682$$ 16.0000 0.612672
$$683$$ −4.00000 −0.153056 −0.0765279 0.997067i $$-0.524383\pi$$
−0.0765279 + 0.997067i $$0.524383\pi$$
$$684$$ 2.00000 0.0764719
$$685$$ 0 0
$$686$$ −15.0000 −0.572703
$$687$$ −10.0000 −0.381524
$$688$$ −4.00000 −0.152499
$$689$$ 1.00000 0.0380970
$$690$$ 0 0
$$691$$ 42.0000 1.59776 0.798878 0.601494i $$-0.205427\pi$$
0.798878 + 0.601494i $$0.205427\pi$$
$$692$$ 6.00000 0.228086
$$693$$ 12.0000 0.455842
$$694$$ −2.00000 −0.0759190
$$695$$ 0 0
$$696$$ 5.00000 0.189525
$$697$$ 24.0000 0.909065
$$698$$ −10.0000 −0.378506
$$699$$ 6.00000 0.226941
$$700$$ 0 0
$$701$$ −28.0000 −1.05755 −0.528773 0.848763i $$-0.677348\pi$$
−0.528773 + 0.848763i $$0.677348\pi$$
$$702$$ 5.00000 0.188713
$$703$$ −2.00000 −0.0754314
$$704$$ 2.00000 0.0753778
$$705$$ 0 0
$$706$$ 9.00000 0.338719
$$707$$ −6.00000 −0.225653
$$708$$ 15.0000 0.563735
$$709$$ −30.0000 −1.12667 −0.563337 0.826227i $$-0.690483\pi$$
−0.563337 + 0.826227i $$0.690483\pi$$
$$710$$ 0 0
$$711$$ 20.0000 0.750059
$$712$$ 0 0
$$713$$ −8.00000 −0.299602
$$714$$ −9.00000 −0.336817
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 15.0000 0.560185
$$718$$ 15.0000 0.559795
$$719$$ −5.00000 −0.186469 −0.0932343 0.995644i $$-0.529721\pi$$
−0.0932343 + 0.995644i $$0.529721\pi$$
$$720$$ 0 0
$$721$$ −18.0000 −0.670355
$$722$$ −1.00000 −0.0372161
$$723$$ −8.00000 −0.297523
$$724$$ 22.0000 0.817624
$$725$$ 0 0
$$726$$ 7.00000 0.259794
$$727$$ 17.0000 0.630495 0.315248 0.949009i $$-0.397912\pi$$
0.315248 + 0.949009i $$0.397912\pi$$
$$728$$ 3.00000 0.111187
$$729$$ 13.0000 0.481481
$$730$$ 0 0
$$731$$ 12.0000 0.443836
$$732$$ 2.00000 0.0739221
$$733$$ 36.0000 1.32969 0.664845 0.746981i $$-0.268498\pi$$
0.664845 + 0.746981i $$0.268498\pi$$
$$734$$ 28.0000 1.03350
$$735$$ 0 0
$$736$$ −1.00000 −0.0368605
$$737$$ −6.00000 −0.221013
$$738$$ −16.0000 −0.588968
$$739$$ −40.0000 −1.47142 −0.735712 0.677295i $$-0.763152\pi$$
−0.735712 + 0.677295i $$0.763152\pi$$
$$740$$ 0 0
$$741$$ −1.00000 −0.0367359
$$742$$ 3.00000 0.110133
$$743$$ 16.0000 0.586983 0.293492 0.955962i $$-0.405183\pi$$
0.293492 + 0.955962i $$0.405183\pi$$
$$744$$ 8.00000 0.293294
$$745$$ 0 0
$$746$$ 29.0000 1.06177
$$747$$ −12.0000 −0.439057
$$748$$ −6.00000 −0.219382
$$749$$ −21.0000 −0.767323
$$750$$ 0 0
$$751$$ 32.0000 1.16770 0.583848 0.811863i $$-0.301546\pi$$
0.583848 + 0.811863i $$0.301546\pi$$
$$752$$ −8.00000 −0.291730
$$753$$ 2.00000 0.0728841
$$754$$ 5.00000 0.182089
$$755$$ 0 0
$$756$$ 15.0000 0.545545
$$757$$ 2.00000 0.0726912 0.0363456 0.999339i $$-0.488428\pi$$
0.0363456 + 0.999339i $$0.488428\pi$$
$$758$$ −15.0000 −0.544825
$$759$$ 2.00000 0.0725954
$$760$$ 0 0
$$761$$ 27.0000 0.978749 0.489375 0.872074i $$-0.337225\pi$$
0.489375 + 0.872074i $$0.337225\pi$$
$$762$$ 18.0000 0.652071
$$763$$ 45.0000 1.62911
$$764$$ 7.00000 0.253251
$$765$$ 0 0
$$766$$ −26.0000 −0.939418
$$767$$ 15.0000 0.541619
$$768$$ 1.00000 0.0360844
$$769$$ −35.0000 −1.26213 −0.631066 0.775729i $$-0.717382\pi$$
−0.631066 + 0.775729i $$0.717382\pi$$
$$770$$ 0 0
$$771$$ −8.00000 −0.288113
$$772$$ 6.00000 0.215945
$$773$$ −9.00000 −0.323708 −0.161854 0.986815i $$-0.551747\pi$$
−0.161854 + 0.986815i $$0.551747\pi$$
$$774$$ −8.00000 −0.287554
$$775$$ 0 0
$$776$$ −2.00000 −0.0717958
$$777$$ −6.00000 −0.215249
$$778$$ 30.0000 1.07555
$$779$$ 8.00000 0.286630
$$780$$ 0 0
$$781$$ 4.00000 0.143131
$$782$$ 3.00000 0.107280
$$783$$ 25.0000 0.893427
$$784$$ 2.00000 0.0714286
$$785$$ 0 0
$$786$$ −12.0000 −0.428026
$$787$$ 17.0000 0.605985 0.302992 0.952993i $$-0.402014\pi$$
0.302992 + 0.952993i $$0.402014\pi$$
$$788$$ −8.00000 −0.284988
$$789$$ −24.0000 −0.854423
$$790$$ 0 0
$$791$$ 42.0000 1.49335
$$792$$ 4.00000 0.142134
$$793$$ 2.00000 0.0710221
$$794$$ 8.00000 0.283909
$$795$$ 0 0
$$796$$ −25.0000 −0.886102
$$797$$ −3.00000 −0.106265 −0.0531327 0.998587i $$-0.516921\pi$$
−0.0531327 + 0.998587i $$0.516921\pi$$
$$798$$ −3.00000 −0.106199
$$799$$ 24.0000 0.849059
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 8.00000 0.282490
$$803$$ −18.0000 −0.635206
$$804$$ −3.00000 −0.105802
$$805$$ 0 0
$$806$$ 8.00000 0.281788
$$807$$ 30.0000 1.05605
$$808$$ −2.00000 −0.0703598
$$809$$ −15.0000 −0.527372 −0.263686 0.964609i $$-0.584938\pi$$
−0.263686 + 0.964609i $$0.584938\pi$$
$$810$$ 0 0
$$811$$ −3.00000 −0.105344 −0.0526721 0.998612i $$-0.516774\pi$$
−0.0526721 + 0.998612i $$0.516774\pi$$
$$812$$ 15.0000 0.526397
$$813$$ 7.00000 0.245501
$$814$$ −4.00000 −0.140200
$$815$$ 0 0
$$816$$ −3.00000 −0.105021
$$817$$ 4.00000 0.139942
$$818$$ 20.0000 0.699284
$$819$$ 6.00000 0.209657
$$820$$ 0 0
$$821$$ 12.0000 0.418803 0.209401 0.977830i $$-0.432848\pi$$
0.209401 + 0.977830i $$0.432848\pi$$
$$822$$ −17.0000 −0.592943
$$823$$ −29.0000 −1.01088 −0.505438 0.862863i $$-0.668669\pi$$
−0.505438 + 0.862863i $$0.668669\pi$$
$$824$$ −6.00000 −0.209020
$$825$$ 0 0
$$826$$ 45.0000 1.56575
$$827$$ −23.0000 −0.799788 −0.399894 0.916561i $$-0.630953\pi$$
−0.399894 + 0.916561i $$0.630953\pi$$
$$828$$ −2.00000 −0.0695048
$$829$$ −15.0000 −0.520972 −0.260486 0.965478i $$-0.583883\pi$$
−0.260486 + 0.965478i $$0.583883\pi$$
$$830$$ 0 0
$$831$$ −28.0000 −0.971309
$$832$$ 1.00000 0.0346688
$$833$$ −6.00000 −0.207888
$$834$$ 0 0
$$835$$ 0 0
$$836$$ −2.00000 −0.0691714
$$837$$ 40.0000 1.38260
$$838$$ 0 0
$$839$$ 20.0000 0.690477 0.345238 0.938515i $$-0.387798\pi$$
0.345238 + 0.938515i $$0.387798\pi$$
$$840$$ 0 0
$$841$$ −4.00000 −0.137931
$$842$$ 13.0000 0.448010
$$843$$ −8.00000 −0.275535
$$844$$ 27.0000 0.929378
$$845$$ 0 0
$$846$$ −16.0000 −0.550091
$$847$$ 21.0000 0.721569
$$848$$ 1.00000 0.0343401
$$849$$ 6.00000 0.205919
$$850$$ 0 0
$$851$$ 2.00000 0.0685591
$$852$$ 2.00000 0.0685189
$$853$$ 6.00000 0.205436 0.102718 0.994711i $$-0.467246\pi$$
0.102718 + 0.994711i $$0.467246\pi$$
$$854$$ 6.00000 0.205316
$$855$$ 0 0
$$856$$ −7.00000 −0.239255
$$857$$ 12.0000 0.409912 0.204956 0.978771i $$-0.434295\pi$$
0.204956 + 0.978771i $$0.434295\pi$$
$$858$$ −2.00000 −0.0682789
$$859$$ −50.0000 −1.70598 −0.852989 0.521929i $$-0.825213\pi$$
−0.852989 + 0.521929i $$0.825213\pi$$
$$860$$ 0 0
$$861$$ 24.0000 0.817918
$$862$$ 18.0000 0.613082
$$863$$ −54.0000 −1.83818 −0.919091 0.394046i $$-0.871075\pi$$
−0.919091 + 0.394046i $$0.871075\pi$$
$$864$$ 5.00000 0.170103
$$865$$ 0 0
$$866$$ 14.0000 0.475739
$$867$$ −8.00000 −0.271694
$$868$$ 24.0000 0.814613
$$869$$ −20.0000 −0.678454
$$870$$ 0 0
$$871$$ −3.00000 −0.101651
$$872$$ 15.0000 0.507964
$$873$$ −4.00000 −0.135379
$$874$$ 1.00000 0.0338255
$$875$$ 0 0
$$876$$ −9.00000 −0.304082
$$877$$ −13.0000 −0.438979 −0.219489 0.975615i $$-0.570439\pi$$
−0.219489 + 0.975615i $$0.570439\pi$$
$$878$$ −20.0000 −0.674967
$$879$$ −9.00000 −0.303562
$$880$$ 0 0
$$881$$ −18.0000 −0.606435 −0.303218 0.952921i $$-0.598061\pi$$
−0.303218 + 0.952921i $$0.598061\pi$$
$$882$$ 4.00000 0.134687
$$883$$ −34.0000 −1.14419 −0.572096 0.820187i $$-0.693869\pi$$
−0.572096 + 0.820187i $$0.693869\pi$$
$$884$$ −3.00000 −0.100901
$$885$$ 0 0
$$886$$ −26.0000 −0.873487
$$887$$ 2.00000 0.0671534 0.0335767 0.999436i $$-0.489310\pi$$
0.0335767 + 0.999436i $$0.489310\pi$$
$$888$$ −2.00000 −0.0671156
$$889$$ 54.0000 1.81110
$$890$$ 0 0
$$891$$ 2.00000 0.0670025
$$892$$ −14.0000 −0.468755
$$893$$ 8.00000 0.267710
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 3.00000 0.100223
$$897$$ 1.00000 0.0333890
$$898$$ −10.0000 −0.333704
$$899$$ 40.0000 1.33407
$$900$$ 0 0
$$901$$ −3.00000 −0.0999445
$$902$$ 16.0000 0.532742
$$903$$ 12.0000 0.399335
$$904$$ 14.0000 0.465633
$$905$$ 0 0
$$906$$ −2.00000 −0.0664455
$$907$$ −53.0000 −1.75984 −0.879918 0.475125i $$-0.842403\pi$$
−0.879918 + 0.475125i $$0.842403\pi$$
$$908$$ 17.0000 0.564165
$$909$$ −4.00000 −0.132672
$$910$$ 0 0
$$911$$ 12.0000 0.397578 0.198789 0.980042i $$-0.436299\pi$$
0.198789 + 0.980042i $$0.436299\pi$$
$$912$$ −1.00000 −0.0331133
$$913$$ 12.0000 0.397142
$$914$$ −7.00000 −0.231539
$$915$$ 0 0
$$916$$ −10.0000 −0.330409
$$917$$ −36.0000 −1.18882
$$918$$ −15.0000 −0.495074
$$919$$ 5.00000 0.164935 0.0824674 0.996594i $$-0.473720\pi$$
0.0824674 + 0.996594i $$0.473720\pi$$
$$920$$ 0 0
$$921$$ 12.0000 0.395413
$$922$$ 28.0000 0.922131
$$923$$ 2.00000 0.0658308
$$924$$ −6.00000 −0.197386
$$925$$ 0 0
$$926$$ 4.00000 0.131448
$$927$$ −12.0000 −0.394132
$$928$$ 5.00000 0.164133
$$929$$ −55.0000 −1.80449 −0.902246 0.431222i $$-0.858082\pi$$
−0.902246 + 0.431222i $$0.858082\pi$$
$$930$$ 0 0
$$931$$ −2.00000 −0.0655474
$$932$$ 6.00000 0.196537
$$933$$ 7.00000 0.229170
$$934$$ −2.00000 −0.0654420
$$935$$ 0 0
$$936$$ 2.00000 0.0653720
$$937$$ 7.00000 0.228680 0.114340 0.993442i $$-0.463525\pi$$
0.114340 + 0.993442i $$0.463525\pi$$
$$938$$ −9.00000 −0.293860
$$939$$ −29.0000 −0.946379
$$940$$ 0 0
$$941$$ 7.00000 0.228193 0.114097 0.993470i $$-0.463603\pi$$
0.114097 + 0.993470i $$0.463603\pi$$
$$942$$ −2.00000 −0.0651635
$$943$$ −8.00000 −0.260516
$$944$$ 15.0000 0.488208
$$945$$ 0 0
$$946$$ 8.00000 0.260102
$$947$$ 12.0000 0.389948 0.194974 0.980808i $$-0.437538\pi$$
0.194974 + 0.980808i $$0.437538\pi$$
$$948$$ −10.0000 −0.324785
$$949$$ −9.00000 −0.292152
$$950$$ 0 0
$$951$$ 27.0000 0.875535
$$952$$ −9.00000 −0.291692
$$953$$ 46.0000 1.49009 0.745043 0.667016i $$-0.232429\pi$$
0.745043 + 0.667016i $$0.232429\pi$$
$$954$$ 2.00000 0.0647524
$$955$$ 0 0
$$956$$ 15.0000 0.485135
$$957$$ −10.0000 −0.323254
$$958$$ 20.0000 0.646171
$$959$$ −51.0000 −1.64688
$$960$$ 0 0
$$961$$ 33.0000 1.06452
$$962$$ −2.00000 −0.0644826
$$963$$ −14.0000 −0.451144
$$964$$ −8.00000 −0.257663
$$965$$ 0 0
$$966$$ 3.00000 0.0965234
$$967$$ −48.0000 −1.54358 −0.771788 0.635880i $$-0.780637\pi$$
−0.771788 + 0.635880i $$0.780637\pi$$
$$968$$ 7.00000 0.224989
$$969$$ 3.00000 0.0963739
$$970$$ 0 0
$$971$$ −28.0000 −0.898563 −0.449281 0.893390i $$-0.648320\pi$$
−0.449281 + 0.893390i $$0.648320\pi$$
$$972$$ 16.0000 0.513200
$$973$$ 0 0
$$974$$ −2.00000 −0.0640841
$$975$$ 0 0
$$976$$ 2.00000 0.0640184
$$977$$ −8.00000 −0.255943 −0.127971 0.991778i $$-0.540847\pi$$
−0.127971 + 0.991778i $$0.540847\pi$$
$$978$$ −16.0000 −0.511624
$$979$$ 0 0
$$980$$ 0 0
$$981$$ 30.0000 0.957826
$$982$$ 28.0000 0.893516
$$983$$ 6.00000 0.191370 0.0956851 0.995412i $$-0.469496\pi$$
0.0956851 + 0.995412i $$0.469496\pi$$
$$984$$ 8.00000 0.255031
$$985$$ 0 0
$$986$$ −15.0000 −0.477697
$$987$$ 24.0000 0.763928
$$988$$ −1.00000 −0.0318142
$$989$$ −4.00000 −0.127193
$$990$$ 0 0
$$991$$ −8.00000 −0.254128 −0.127064 0.991894i $$-0.540555\pi$$
−0.127064 + 0.991894i $$0.540555\pi$$
$$992$$ 8.00000 0.254000
$$993$$ 17.0000 0.539479
$$994$$ 6.00000 0.190308
$$995$$ 0 0
$$996$$ 6.00000 0.190117
$$997$$ −28.0000 −0.886769 −0.443384 0.896332i $$-0.646222\pi$$
−0.443384 + 0.896332i $$0.646222\pi$$
$$998$$ −40.0000 −1.26618
$$999$$ −10.0000 −0.316386
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 950.2.a.b.1.1 1
3.2 odd 2 8550.2.a.u.1.1 1
4.3 odd 2 7600.2.a.h.1.1 1
5.2 odd 4 950.2.b.c.799.1 2
5.3 odd 4 950.2.b.c.799.2 2
5.4 even 2 38.2.a.b.1.1 1
15.14 odd 2 342.2.a.d.1.1 1
20.19 odd 2 304.2.a.d.1.1 1
35.34 odd 2 1862.2.a.f.1.1 1
40.19 odd 2 1216.2.a.g.1.1 1
40.29 even 2 1216.2.a.n.1.1 1
55.54 odd 2 4598.2.a.a.1.1 1
60.59 even 2 2736.2.a.w.1.1 1
65.64 even 2 6422.2.a.b.1.1 1
95.4 even 18 722.2.e.c.415.1 6
95.9 even 18 722.2.e.c.423.1 6
95.14 odd 18 722.2.e.d.595.1 6
95.24 even 18 722.2.e.c.595.1 6
95.29 odd 18 722.2.e.d.423.1 6
95.34 odd 18 722.2.e.d.415.1 6
95.44 even 18 722.2.e.c.245.1 6
95.49 even 6 722.2.c.d.653.1 2
95.54 even 18 722.2.e.c.389.1 6
95.59 odd 18 722.2.e.d.99.1 6
95.64 even 6 722.2.c.d.429.1 2
95.69 odd 6 722.2.c.f.429.1 2
95.74 even 18 722.2.e.c.99.1 6
95.79 odd 18 722.2.e.d.389.1 6
95.84 odd 6 722.2.c.f.653.1 2
95.89 odd 18 722.2.e.d.245.1 6
95.94 odd 2 722.2.a.b.1.1 1
285.284 even 2 6498.2.a.y.1.1 1
380.379 even 2 5776.2.a.d.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
38.2.a.b.1.1 1 5.4 even 2
304.2.a.d.1.1 1 20.19 odd 2
342.2.a.d.1.1 1 15.14 odd 2
722.2.a.b.1.1 1 95.94 odd 2
722.2.c.d.429.1 2 95.64 even 6
722.2.c.d.653.1 2 95.49 even 6
722.2.c.f.429.1 2 95.69 odd 6
722.2.c.f.653.1 2 95.84 odd 6
722.2.e.c.99.1 6 95.74 even 18
722.2.e.c.245.1 6 95.44 even 18
722.2.e.c.389.1 6 95.54 even 18
722.2.e.c.415.1 6 95.4 even 18
722.2.e.c.423.1 6 95.9 even 18
722.2.e.c.595.1 6 95.24 even 18
722.2.e.d.99.1 6 95.59 odd 18
722.2.e.d.245.1 6 95.89 odd 18
722.2.e.d.389.1 6 95.79 odd 18
722.2.e.d.415.1 6 95.34 odd 18
722.2.e.d.423.1 6 95.29 odd 18
722.2.e.d.595.1 6 95.14 odd 18
950.2.a.b.1.1 1 1.1 even 1 trivial
950.2.b.c.799.1 2 5.2 odd 4
950.2.b.c.799.2 2 5.3 odd 4
1216.2.a.g.1.1 1 40.19 odd 2
1216.2.a.n.1.1 1 40.29 even 2
1862.2.a.f.1.1 1 35.34 odd 2
2736.2.a.w.1.1 1 60.59 even 2
4598.2.a.a.1.1 1 55.54 odd 2
5776.2.a.d.1.1 1 380.379 even 2
6422.2.a.b.1.1 1 65.64 even 2
6498.2.a.y.1.1 1 285.284 even 2
7600.2.a.h.1.1 1 4.3 odd 2
8550.2.a.u.1.1 1 3.2 odd 2