Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [95,7,Mod(94,95)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(95, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 7, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("95.94");
S:= CuspForms(chi, 7);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(21.8551379439\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
94.1 | −15.6013 | −14.3779 | 179.401 | 52.9095 | − | 113.250i | 224.314 | 619.509i | −1800.41 | −522.275 | −825.458 | + | 1766.85i | ||||||||||||||
94.2 | −15.6013 | −14.3779 | 179.401 | 52.9095 | + | 113.250i | 224.314 | − | 619.509i | −1800.41 | −522.275 | −825.458 | − | 1766.85i | |||||||||||||
94.3 | −13.6197 | 22.4793 | 121.496 | 94.0230 | − | 82.3692i | −306.161 | − | 388.532i | −783.074 | −223.681 | −1280.56 | + | 1121.84i | |||||||||||||
94.4 | −13.6197 | 22.4793 | 121.496 | 94.0230 | + | 82.3692i | −306.161 | 388.532i | −783.074 | −223.681 | −1280.56 | − | 1121.84i | ||||||||||||||
94.5 | −13.1881 | −37.6588 | 109.927 | −67.2707 | − | 105.355i | 496.649 | − | 324.825i | −605.685 | 689.186 | 887.174 | + | 1389.43i | |||||||||||||
94.6 | −13.1881 | −37.6588 | 109.927 | −67.2707 | + | 105.355i | 496.649 | 324.825i | −605.685 | 689.186 | 887.174 | − | 1389.43i | ||||||||||||||
94.7 | −12.5212 | 7.08147 | 92.7798 | −100.653 | − | 74.1219i | −88.6683 | − | 86.3202i | −360.356 | −678.853 | 1260.29 | + | 928.093i | |||||||||||||
94.8 | −12.5212 | 7.08147 | 92.7798 | −100.653 | + | 74.1219i | −88.6683 | 86.3202i | −360.356 | −678.853 | 1260.29 | − | 928.093i | ||||||||||||||
94.9 | −11.2109 | 40.4769 | 61.6844 | 68.6103 | − | 104.487i | −453.783 | 223.504i | 25.9597 | 909.379 | −769.184 | + | 1171.40i | ||||||||||||||
94.10 | −11.2109 | 40.4769 | 61.6844 | 68.6103 | + | 104.487i | −453.783 | − | 223.504i | 25.9597 | 909.379 | −769.184 | − | 1171.40i | |||||||||||||
94.11 | −7.97374 | −10.4283 | −0.419420 | 81.2537 | − | 94.9886i | 83.1524 | − | 400.633i | 513.664 | −620.251 | −647.896 | + | 757.415i | |||||||||||||
94.12 | −7.97374 | −10.4283 | −0.419420 | 81.2537 | + | 94.9886i | 83.1524 | 400.633i | 513.664 | −620.251 | −647.896 | − | 757.415i | ||||||||||||||
94.13 | −7.28171 | 23.1081 | −10.9768 | −80.3125 | − | 95.7857i | −168.266 | 430.723i | 545.959 | −195.016 | 584.812 | + | 697.483i | ||||||||||||||
94.14 | −7.28171 | 23.1081 | −10.9768 | −80.3125 | + | 95.7857i | −168.266 | − | 430.723i | 545.959 | −195.016 | 584.812 | − | 697.483i | |||||||||||||
94.15 | −6.98433 | −15.2192 | −15.2191 | 11.0350 | − | 124.512i | 106.296 | 344.183i | 553.292 | −497.377 | −77.0722 | + | 869.633i | ||||||||||||||
94.16 | −6.98433 | −15.2192 | −15.2191 | 11.0350 | + | 124.512i | 106.296 | − | 344.183i | 553.292 | −497.377 | −77.0722 | − | 869.633i | |||||||||||||
94.17 | −6.74131 | 45.9005 | −18.5547 | −72.3540 | − | 101.931i | −309.430 | − | 495.038i | 556.527 | 1377.86 | 487.761 | + | 687.147i | |||||||||||||
94.18 | −6.74131 | 45.9005 | −18.5547 | −72.3540 | + | 101.931i | −309.430 | 495.038i | 556.527 | 1377.86 | 487.761 | − | 687.147i | ||||||||||||||
94.19 | −6.41263 | −35.7503 | −22.8782 | −121.536 | − | 29.2230i | 229.254 | 513.890i | 557.118 | 549.086 | 779.366 | + | 187.396i | ||||||||||||||
94.20 | −6.41263 | −35.7503 | −22.8782 | −121.536 | + | 29.2230i | 229.254 | − | 513.890i | 557.118 | 549.086 | 779.366 | − | 187.396i | |||||||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
19.b | odd | 2 | 1 | inner |
95.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.7.d.d | ✓ | 48 |
5.b | even | 2 | 1 | inner | 95.7.d.d | ✓ | 48 |
19.b | odd | 2 | 1 | inner | 95.7.d.d | ✓ | 48 |
95.d | odd | 2 | 1 | inner | 95.7.d.d | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.7.d.d | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
95.7.d.d | ✓ | 48 | 5.b | even | 2 | 1 | inner |
95.7.d.d | ✓ | 48 | 19.b | odd | 2 | 1 | inner |
95.7.d.d | ✓ | 48 | 95.d | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{24} - 1152 T_{2}^{22} + 574861 T_{2}^{20} - 163495126 T_{2}^{18} + 29354980192 T_{2}^{16} + \cdots + 25\!\cdots\!00 \)
acting on \(S_{7}^{\mathrm{new}}(95, [\chi])\).