Properties

Label 95.7.d.b
Level $95$
Weight $7$
Character orbit 95.d
Self dual yes
Analytic conductor $21.855$
Analytic rank $0$
Dimension $4$
CM discriminant -95
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [95,7,Mod(94,95)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(95, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("95.94");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 95.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.8551379439\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.462080.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 16x^{2} + 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (3 \beta_{2} - 2 \beta_1) q^{2} + ( - 11 \beta_{2} + 3 \beta_1) q^{3} + ( - 29 \beta_{3} + 64) q^{4} - 125 q^{5} + (89 \beta_{3} - 413) q^{6} + (348 \beta_{2} - 319 \beta_1) q^{8} + ( - 244 \beta_{3} + 729) q^{9}+ \cdots + ( - 172044 \beta_{3} + 1094096) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 256 q^{4} - 500 q^{5} - 1652 q^{6} + 2916 q^{9} + 47532 q^{16} + 27436 q^{19} - 32000 q^{20} - 196156 q^{24} + 62500 q^{25} + 30788 q^{26} + 206500 q^{30} + 724400 q^{36} + 36472 q^{39} + 520144 q^{44}+ \cdots + 4376384 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 16x^{2} + 45 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 10\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{2} + 10\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
94.1
1.90817
−3.51552
3.51552
−1.90817
−15.9502 50.2153 190.408 −125.000 −800.942 0 −2016.23 1792.57 1993.77
94.2 −1.26172 19.8602 −62.4081 −125.000 −25.0580 0 159.491 −334.571 157.715
94.3 1.26172 −19.8602 −62.4081 −125.000 −25.0580 0 −159.491 −334.571 −157.715
94.4 15.9502 −50.2153 190.408 −125.000 −800.942 0 2016.23 1792.57 −1993.77
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
95.d odd 2 1 CM by \(\Q(\sqrt{-95}) \)
5.b even 2 1 inner
19.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 95.7.d.b 4
5.b even 2 1 inner 95.7.d.b 4
19.b odd 2 1 inner 95.7.d.b 4
95.d odd 2 1 CM 95.7.d.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.7.d.b 4 1.a even 1 1 trivial
95.7.d.b 4 5.b even 2 1 inner
95.7.d.b 4 19.b odd 2 1 inner
95.7.d.b 4 95.d odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 256T_{2}^{2} + 405 \) acting on \(S_{7}^{\mathrm{new}}(95, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 256T^{2} + 405 \) Copy content Toggle raw display
$3$ \( T^{4} - 2916 T^{2} + 994580 \) Copy content Toggle raw display
$5$ \( (T + 125)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 1058224)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 29658057700500 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T - 6859)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 12\!\cdots\!80 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 33\!\cdots\!20 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 35847035824)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 20\!\cdots\!80 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 18\!\cdots\!20 \) Copy content Toggle raw display
show more
show less