Newspace parameters
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.q (of order \(36\), degree \(12\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.82014649297\) |
Analytic rank: | \(0\) |
Dimension: | \(456\) |
Relative dimension: | \(38\) over \(\Q(\zeta_{36})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{36}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 | −6.25850 | + | 4.38225i | −16.5767 | + | 1.45028i | 14.4924 | − | 39.8175i | −18.2887 | + | 17.0448i | 97.3900 | − | 81.7199i | 5.37798 | − | 20.0709i | 52.1506 | + | 194.629i | 192.916 | − | 34.0163i | 39.7650 | − | 186.820i |
17.2 | −6.07197 | + | 4.25164i | −0.946507 | + | 0.0828086i | 13.3201 | − | 36.5966i | 2.51310 | − | 24.8734i | 5.39509 | − | 4.52702i | 19.4176 | − | 72.4674i | 44.0206 | + | 164.287i | −78.8804 | + | 13.9087i | 90.4932 | + | 161.715i |
17.3 | −5.80689 | + | 4.06603i | 6.77670 | − | 0.592885i | 11.7151 | − | 32.1869i | −24.5342 | − | 4.80323i | −36.9409 | + | 30.9971i | −12.2458 | + | 45.7020i | 33.4888 | + | 124.982i | −34.1972 | + | 6.02989i | 161.998 | − | 71.8651i |
17.4 | −5.67420 | + | 3.97311i | 15.2509 | − | 1.33428i | 10.9385 | − | 30.0534i | 24.9938 | − | 0.558702i | −81.2353 | + | 68.1645i | −4.02130 | + | 15.0077i | 28.6531 | + | 106.935i | 151.040 | − | 26.6324i | −139.600 | + | 102.473i |
17.5 | −5.47669 | + | 3.83482i | −6.25410 | + | 0.547163i | 9.81595 | − | 26.9691i | 24.9004 | + | 2.22916i | 32.1535 | − | 26.9800i | −14.6822 | + | 54.7948i | 21.9761 | + | 82.0160i | −40.9550 | + | 7.22147i | −144.920 | + | 83.2802i |
17.6 | −5.03583 | + | 3.52613i | 9.59883 | − | 0.839789i | 7.45372 | − | 20.4789i | −9.45130 | + | 23.1446i | −45.3769 | + | 38.0757i | 10.7783 | − | 40.2251i | 9.21769 | + | 34.4009i | 11.6629 | − | 2.05648i | −34.0157 | − | 149.879i |
17.7 | −4.40466 | + | 3.08418i | −4.44680 | + | 0.389045i | 4.41656 | − | 12.1344i | 9.38370 | + | 23.1721i | 18.3868 | − | 15.4283i | 12.2117 | − | 45.5748i | −4.29593 | − | 16.0326i | −60.1468 | + | 10.6055i | −112.799 | − | 73.1242i |
17.8 | −4.22441 | + | 2.95796i | −11.0210 | + | 0.964216i | 3.62375 | − | 9.95617i | −10.4339 | − | 22.7186i | 43.7052 | − | 36.6731i | −3.12456 | + | 11.6610i | −7.21410 | − | 26.9234i | 40.7643 | − | 7.18784i | 111.278 | + | 65.1093i |
17.9 | −3.99118 | + | 2.79465i | −5.71309 | + | 0.499831i | 2.64709 | − | 7.27283i | −22.6999 | + | 10.4746i | 21.4051 | − | 17.9610i | −18.0060 | + | 67.1995i | −10.4168 | − | 38.8761i | −47.3799 | + | 8.35435i | 61.3264 | − | 105.244i |
17.10 | −3.52270 | + | 2.46662i | 8.80247 | − | 0.770116i | 0.852857 | − | 2.34320i | −1.44605 | − | 24.9581i | −29.1088 | + | 24.4252i | −12.6105 | + | 47.0630i | −15.0330 | − | 56.1041i | −2.87906 | + | 0.507657i | 66.6562 | + | 84.3531i |
17.11 | −2.89961 | + | 2.03033i | 16.6091 | − | 1.45311i | −1.18681 | + | 3.26073i | −20.0321 | − | 14.9571i | −45.2098 | + | 37.9355i | 14.7254 | − | 54.9561i | −17.8377 | − | 66.5710i | 193.983 | − | 34.2044i | 88.4532 | + | 2.69818i |
17.12 | −2.85823 | + | 2.00135i | −17.1966 | + | 1.50451i | −1.30827 | + | 3.59444i | 24.7005 | − | 3.85796i | 46.1409 | − | 38.7168i | 8.19610 | − | 30.5883i | −17.9038 | − | 66.8178i | 213.692 | − | 37.6796i | −62.8786 | + | 60.4614i |
17.13 | −2.63643 | + | 1.84605i | 3.39029 | − | 0.296612i | −1.92946 | + | 5.30115i | 19.6316 | − | 15.4790i | −8.39068 | + | 7.04062i | 8.71165 | − | 32.5123i | −18.0274 | − | 67.2790i | −68.3634 | + | 12.0543i | −23.1822 | + | 77.0502i |
17.14 | −2.23439 | + | 1.56454i | −8.20490 | + | 0.717836i | −2.92760 | + | 8.04351i | −24.5311 | − | 4.81910i | 17.2099 | − | 14.4408i | 19.0367 | − | 71.0458i | −17.3386 | − | 64.7086i | −12.9644 | + | 2.28597i | 62.3518 | − | 27.6121i |
17.15 | −2.17548 | + | 1.52329i | 9.51502 | − | 0.832456i | −3.06002 | + | 8.40734i | 14.6395 | + | 20.2653i | −19.4316 | + | 16.3051i | −14.3821 | + | 53.6745i | −17.1476 | − | 63.9956i | 10.0731 | − | 1.77616i | −62.7179 | − | 21.7866i |
17.16 | −1.23697 | + | 0.866132i | 3.84076 | − | 0.336023i | −4.69242 | + | 12.8923i | −21.1770 | + | 13.2866i | −4.45984 | + | 3.74225i | 0.740717 | − | 2.76439i | −11.6154 | − | 43.3493i | −65.1309 | + | 11.4843i | 14.6872 | − | 34.7772i |
17.17 | −0.940564 | + | 0.658590i | −12.3455 | + | 1.08009i | −5.02140 | + | 13.7962i | 0.951781 | + | 24.9819i | 10.9004 | − | 9.14651i | −18.8968 | + | 70.5238i | −9.11797 | − | 34.0287i | 71.4748 | − | 12.6029i | −17.3480 | − | 22.8702i |
17.18 | −0.222713 | + | 0.155945i | −9.35354 | + | 0.818328i | −5.44704 | + | 14.9656i | 2.14303 | − | 24.9080i | 1.95554 | − | 1.64089i | −15.0955 | + | 56.3372i | −2.24658 | − | 8.38436i | 7.04956 | − | 1.24303i | 3.40700 | + | 5.88152i |
17.19 | 0.246108 | − | 0.172327i | 13.9894 | − | 1.22391i | −5.44145 | + | 14.9503i | 21.4477 | + | 12.8450i | 3.23199 | − | 2.71196i | 22.6251 | − | 84.4380i | 2.48131 | + | 9.26037i | 114.436 | − | 20.1781i | 7.49201 | − | 0.534746i |
17.20 | 0.470940 | − | 0.329756i | −3.66462 | + | 0.320613i | −5.35928 | + | 14.7245i | 24.1757 | − | 6.36689i | −1.62009 | + | 1.35942i | −0.0600223 | + | 0.224006i | 4.71236 | + | 17.5867i | −66.4428 | + | 11.7157i | 9.28576 | − | 10.9705i |
See next 80 embeddings (of 456 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
19.e | even | 9 | 1 | inner |
95.q | odd | 36 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.5.q.a | ✓ | 456 |
5.c | odd | 4 | 1 | inner | 95.5.q.a | ✓ | 456 |
19.e | even | 9 | 1 | inner | 95.5.q.a | ✓ | 456 |
95.q | odd | 36 | 1 | inner | 95.5.q.a | ✓ | 456 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.5.q.a | ✓ | 456 | 1.a | even | 1 | 1 | trivial |
95.5.q.a | ✓ | 456 | 5.c | odd | 4 | 1 | inner |
95.5.q.a | ✓ | 456 | 19.e | even | 9 | 1 | inner |
95.5.q.a | ✓ | 456 | 95.q | odd | 36 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(95, [\chi])\).