Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [95,5,Mod(21,95)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(95, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("95.21");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.n (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.82014649297\) |
Analytic rank: | \(0\) |
Dimension: | \(156\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21.1 | −7.46884 | − | 1.31696i | 7.64574 | − | 9.11184i | 39.0141 | + | 14.2000i | −10.5061 | + | 3.82390i | −69.1047 | + | 57.9857i | −3.84130 | − | 6.65333i | −167.601 | − | 96.7647i | −10.5027 | − | 59.5640i | 83.5042 | − | 14.7240i |
21.2 | −7.13747 | − | 1.25853i | −7.96405 | + | 9.49119i | 34.3245 | + | 12.4931i | −10.5061 | + | 3.82390i | 68.7881 | − | 57.7201i | −20.4365 | − | 35.3971i | −128.842 | − | 74.3868i | −12.5910 | − | 71.4072i | 79.7993 | − | 14.0708i |
21.3 | −6.54219 | − | 1.15356i | −1.35089 | + | 1.60993i | 26.4345 | + | 9.62136i | 10.5061 | − | 3.82390i | 10.6949 | − | 8.97411i | −33.6428 | − | 58.2711i | −69.7908 | − | 40.2938i | 13.2985 | + | 75.4198i | −73.1439 | + | 12.8972i |
21.4 | −6.40522 | − | 1.12941i | 5.57742 | − | 6.64691i | 24.7162 | + | 8.99594i | 10.5061 | − | 3.82390i | −43.2317 | + | 36.2757i | 24.7938 | + | 42.9441i | −58.0297 | − | 33.5035i | 0.991699 | + | 5.62421i | −71.6125 | + | 12.6272i |
21.5 | −5.10074 | − | 0.899398i | 10.2660 | − | 12.2346i | 10.1735 | + | 3.70287i | 10.5061 | − | 3.82390i | −63.3681 | + | 53.1722i | −34.3114 | − | 59.4291i | 23.2060 | + | 13.3980i | −30.2281 | − | 171.432i | −57.0280 | + | 10.0556i |
21.6 | −4.97000 | − | 0.876344i | −5.76535 | + | 6.87087i | 8.89780 | + | 3.23854i | −10.5061 | + | 3.82390i | 34.6750 | − | 29.0958i | 28.6735 | + | 49.6640i | 28.5447 | + | 16.4803i | 0.0958285 | + | 0.543470i | 55.5662 | − | 9.79783i |
21.7 | −4.90265 | − | 0.864470i | −10.5069 | + | 12.5216i | 8.25360 | + | 3.00407i | 10.5061 | − | 3.82390i | 62.3362 | − | 52.3063i | −9.68867 | − | 16.7813i | 31.1135 | + | 17.9634i | −32.3309 | − | 183.357i | −54.8133 | + | 9.66507i |
21.8 | −4.60373 | − | 0.811761i | 5.16407 | − | 6.15430i | 5.50025 | + | 2.00193i | −10.5061 | + | 3.82390i | −28.7698 | + | 24.1407i | 6.86241 | + | 11.8860i | 41.0786 | + | 23.7167i | 2.85771 | + | 16.2069i | 51.4712 | − | 9.07576i |
21.9 | −3.31396 | − | 0.584341i | −4.01758 | + | 4.78797i | −4.39421 | − | 1.59936i | 10.5061 | − | 3.82390i | 16.1119 | − | 13.5195i | 11.0563 | + | 19.1501i | 60.2556 | + | 34.7886i | 7.28183 | + | 41.2973i | −37.0512 | + | 6.53313i |
21.10 | −2.49144 | − | 0.439307i | 6.13492 | − | 7.31131i | −9.02082 | − | 3.28331i | 10.5061 | − | 3.82390i | −18.4967 | + | 15.5206i | 46.4921 | + | 80.5267i | 56.0873 | + | 32.3820i | −1.75256 | − | 9.93925i | −27.8551 | + | 4.91161i |
21.11 | −1.09522 | − | 0.193117i | −8.57854 | + | 10.2235i | −13.8729 | − | 5.04931i | −10.5061 | + | 3.82390i | 11.3697 | − | 9.54032i | −42.1393 | − | 72.9874i | 29.6287 | + | 17.1061i | −16.8632 | − | 95.6359i | 12.2449 | − | 2.15911i |
21.12 | −0.768084 | − | 0.135434i | −2.11315 | + | 2.51835i | −14.4635 | − | 5.26427i | 10.5061 | − | 3.82390i | 1.96415 | − | 1.64811i | −18.0630 | − | 31.2860i | 21.2033 | + | 12.2417i | 12.1888 | + | 69.1261i | −8.58744 | + | 1.51420i |
21.13 | −0.654331 | − | 0.115376i | 11.3616 | − | 13.5403i | −14.6202 | − | 5.32133i | −10.5061 | + | 3.82390i | −8.99651 | + | 7.54897i | 5.74665 | + | 9.95349i | 18.1591 | + | 10.4842i | −40.1867 | − | 227.910i | 7.31565 | − | 1.28995i |
21.14 | 0.0368023 | + | 0.00648924i | −4.11911 | + | 4.90897i | −15.0338 | − | 5.47184i | −10.5061 | + | 3.82390i | −0.183448 | + | 0.153931i | 9.41807 | + | 16.3126i | −1.03558 | − | 0.597894i | 6.93464 | + | 39.3283i | −0.411462 | + | 0.0725519i |
21.15 | 0.997174 | + | 0.175829i | 2.73108 | − | 3.25477i | −14.0716 | − | 5.12166i | −10.5061 | + | 3.82390i | 3.29564 | − | 2.76537i | 15.5925 | + | 27.0071i | −27.1617 | − | 15.6818i | 10.9307 | + | 61.9913i | −11.1487 | + | 1.96582i |
21.16 | 2.17727 | + | 0.383911i | 5.55356 | − | 6.61847i | −10.4420 | − | 3.80057i | 10.5061 | − | 3.82390i | 14.6325 | − | 12.2781i | −21.8707 | − | 37.8811i | −51.9104 | − | 29.9705i | 1.10333 | + | 6.25730i | 24.3426 | − | 4.29225i |
21.17 | 2.97083 | + | 0.523838i | −8.21207 | + | 9.78677i | −6.48365 | − | 2.35985i | 10.5061 | − | 3.82390i | −29.5234 | + | 24.7731i | −13.9192 | − | 24.1087i | −59.8257 | − | 34.5404i | −14.2772 | − | 80.9699i | 33.2149 | − | 5.85668i |
21.18 | 3.51801 | + | 0.620321i | −2.60001 | + | 3.09857i | −3.04346 | − | 1.10773i | 10.5061 | − | 3.82390i | −11.0690 | + | 9.28798i | 34.0497 | + | 58.9759i | −59.5188 | − | 34.3632i | 11.2244 | + | 63.6568i | 39.3326 | − | 6.93540i |
21.19 | 3.65190 | + | 0.643929i | −1.10941 | + | 1.32214i | −2.11333 | − | 0.769187i | −10.5061 | + | 3.82390i | −4.90281 | + | 4.11394i | −18.6533 | − | 32.3084i | −58.6052 | − | 33.8358i | 13.5482 | + | 76.8359i | −40.8295 | + | 7.19935i |
21.20 | 4.04801 | + | 0.713773i | 7.34213 | − | 8.75001i | 0.841792 | + | 0.306387i | −10.5061 | + | 3.82390i | 35.9665 | − | 30.1795i | −41.0247 | − | 71.0568i | −53.7672 | − | 31.0425i | −8.59029 | − | 48.7179i | −45.2581 | + | 7.98022i |
See next 80 embeddings (of 156 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.f | odd | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.5.n.a | ✓ | 156 |
19.f | odd | 18 | 1 | inner | 95.5.n.a | ✓ | 156 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.5.n.a | ✓ | 156 | 1.a | even | 1 | 1 | trivial |
95.5.n.a | ✓ | 156 | 19.f | odd | 18 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(95, [\chi])\).