Properties

Label 95.5.n
Level $95$
Weight $5$
Character orbit 95.n
Rep. character $\chi_{95}(21,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $156$
Newform subspaces $1$
Sturm bound $50$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 95.n (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(50\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(95, [\chi])\).

Total New Old
Modular forms 252 156 96
Cusp forms 228 156 72
Eisenstein series 24 0 24

Trace form

\( 156 q + 24 q^{3} + 42 q^{4} + 42 q^{6} - 504 q^{9} - 150 q^{10} - 1728 q^{12} - 1122 q^{13} + 576 q^{14} + 2058 q^{16} + 1260 q^{17} + 900 q^{19} + 1026 q^{21} - 4608 q^{22} - 1260 q^{23} - 4032 q^{24}+ \cdots + 28038 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.5.n.a 95.n 19.f $156$ $9.820$ None 95.5.n.a \(0\) \(24\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{5}^{\mathrm{old}}(95, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(95, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 2}\)