Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [95,5,Mod(7,95)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(95, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([3, 4]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("95.7");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.m (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.82014649297\) |
Analytic rank: | \(0\) |
Dimension: | \(152\) |
Relative dimension: | \(38\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −2.00464 | + | 7.48144i | −6.02777 | − | 1.61514i | −38.0969 | − | 21.9952i | 19.2366 | − | 15.9672i | 24.1671 | − | 41.8586i | 42.6172 | + | 42.6172i | 153.298 | − | 153.298i | −36.4228 | − | 21.0287i | 80.8950 | + | 175.926i |
7.2 | −1.89126 | + | 7.05826i | 11.6064 | + | 3.10992i | −32.3858 | − | 18.6980i | −4.12336 | − | 24.6576i | −43.9013 | + | 76.0393i | −48.0202 | − | 48.0202i | 110.553 | − | 110.553i | 54.8888 | + | 31.6900i | 181.838 | + | 17.5301i |
7.3 | −1.88699 | + | 7.04235i | −13.1788 | − | 3.53124i | −32.1775 | − | 18.5777i | −19.4346 | + | 15.7257i | 49.7365 | − | 86.1461i | −26.0222 | − | 26.0222i | 109.064 | − | 109.064i | 91.0624 | + | 52.5749i | −74.0727 | − | 166.539i |
7.4 | −1.79516 | + | 6.69961i | 11.7300 | + | 3.14304i | −27.8058 | − | 16.0537i | −11.9846 | + | 21.9401i | −42.1143 | + | 72.9441i | 38.4526 | + | 38.4526i | 78.9982 | − | 78.9982i | 57.5657 | + | 33.2356i | −125.476 | − | 119.678i |
7.5 | −1.62018 | + | 6.04660i | −1.59130 | − | 0.426387i | −20.0800 | − | 11.5932i | 13.7862 | + | 20.8552i | 5.15639 | − | 8.93113i | −37.0362 | − | 37.0362i | 31.8101 | − | 31.8101i | −67.7976 | − | 39.1430i | −148.440 | + | 49.5703i |
7.6 | −1.61465 | + | 6.02596i | −1.21021 | − | 0.324275i | −19.8487 | − | 11.4597i | −24.9326 | − | 1.83423i | 3.90814 | − | 6.76910i | −1.87404 | − | 1.87404i | 30.5232 | − | 30.5232i | −68.7886 | − | 39.7151i | 51.3105 | − | 147.281i |
7.7 | −1.51945 | + | 5.67065i | 9.44369 | + | 2.53043i | −15.9912 | − | 9.23250i | 24.9954 | − | 0.479005i | −28.6984 | + | 49.7070i | 5.19577 | + | 5.19577i | 10.2327 | − | 10.2327i | 12.6322 | + | 7.29322i | −35.2629 | + | 142.468i |
7.8 | −1.31890 | + | 4.92220i | −13.1586 | − | 3.52583i | −8.63218 | − | 4.98379i | −3.81213 | − | 24.7076i | 34.7097 | − | 60.1189i | −13.9598 | − | 13.9598i | −21.7366 | + | 21.7366i | 90.5683 | + | 52.2897i | 126.644 | + | 13.8228i |
7.9 | −1.24227 | + | 4.63620i | 1.40001 | + | 0.375131i | −6.09471 | − | 3.51878i | −20.0801 | − | 14.8926i | −3.47837 | + | 6.02471i | 55.0876 | + | 55.0876i | −30.4179 | + | 30.4179i | −68.3288 | − | 39.4496i | 93.9898 | − | 74.5949i |
7.10 | −1.19472 | + | 4.45875i | −12.4417 | − | 3.33374i | −4.59673 | − | 2.65392i | 16.0067 | + | 19.2038i | 29.7287 | − | 51.4916i | 56.2139 | + | 56.2139i | −34.8996 | + | 34.8996i | 73.5339 | + | 42.4548i | −104.749 | + | 48.4267i |
7.11 | −0.984813 | + | 3.67537i | −2.95944 | − | 0.792981i | 1.31790 | + | 0.760891i | 18.4338 | − | 16.8878i | 5.82900 | − | 10.0961i | −28.1313 | − | 28.1313i | −47.1434 | + | 47.1434i | −62.0186 | − | 35.8064i | 43.9150 | + | 84.3822i |
7.12 | −0.871340 | + | 3.25189i | 13.0769 | + | 3.50396i | 4.04087 | + | 2.33300i | −1.89394 | − | 24.9282i | −22.7889 | + | 39.4716i | 21.4417 | + | 21.4417i | −49.1964 | + | 49.1964i | 88.5806 | + | 51.1420i | 82.7138 | + | 15.5620i |
7.13 | −0.786289 | + | 2.93447i | 8.03815 | + | 2.15382i | 5.86353 | + | 3.38531i | −24.4263 | + | 5.32520i | −12.6406 | + | 21.8942i | −67.8037 | − | 67.8037i | −48.9155 | + | 48.9155i | −10.1751 | − | 5.87458i | 3.57947 | − | 75.8653i |
7.14 | −0.773143 | + | 2.88541i | 14.8770 | + | 3.98627i | 6.12857 | + | 3.53833i | 15.7790 | + | 19.3913i | −23.0040 | + | 39.8442i | −13.4027 | − | 13.4027i | −48.7441 | + | 48.7441i | 135.286 | + | 78.1072i | −68.1513 | + | 30.5366i |
7.15 | −0.631286 | + | 2.35599i | 2.59409 | + | 0.695085i | 8.70424 | + | 5.02539i | −9.35720 | + | 23.1828i | −3.27523 | + | 5.67286i | 15.8569 | + | 15.8569i | −44.9299 | + | 44.9299i | −63.9019 | − | 36.8938i | −48.7114 | − | 36.6805i |
7.16 | −0.548107 | + | 2.04556i | −12.0367 | − | 3.22523i | 9.97251 | + | 5.75763i | −20.7755 | + | 13.9060i | 13.1948 | − | 22.8541i | −5.69349 | − | 5.69349i | −41.2029 | + | 41.2029i | 64.3327 | + | 37.1425i | −17.0584 | − | 50.1196i |
7.17 | −0.225771 | + | 0.842589i | 1.59816 | + | 0.428224i | 13.1974 | + | 7.61954i | 23.5944 | − | 8.26459i | −0.721634 | + | 1.24991i | 34.1318 | + | 34.1318i | −19.2688 | + | 19.2688i | −67.7773 | − | 39.1313i | 1.63672 | + | 21.7463i |
7.18 | −0.203075 | + | 0.757886i | −12.0551 | − | 3.23014i | 13.3233 | + | 7.69218i | 22.9592 | + | 9.89314i | 4.89616 | − | 8.48040i | −50.6680 | − | 50.6680i | −17.4124 | + | 17.4124i | 64.7425 | + | 37.3791i | −12.1603 | + | 15.3914i |
7.19 | 0.125844 | − | 0.469657i | −7.83458 | − | 2.09927i | 13.6517 | + | 7.88179i | −19.5139 | − | 15.6271i | −1.97187 | + | 3.41539i | 24.5781 | + | 24.5781i | 10.9207 | − | 10.9207i | −13.1743 | − | 7.60620i | −9.79510 | + | 7.19827i |
7.20 | 0.183856 | − | 0.686162i | 3.57524 | + | 0.957982i | 13.4194 | + | 7.74769i | 14.5673 | + | 20.3174i | 1.31466 | − | 2.27706i | 38.3696 | + | 38.3696i | 15.8203 | − | 15.8203i | −58.2835 | − | 33.6500i | 16.6193 | − | 6.26002i |
See next 80 embeddings (of 152 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
19.c | even | 3 | 1 | inner |
95.m | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.5.m.a | ✓ | 152 |
5.c | odd | 4 | 1 | inner | 95.5.m.a | ✓ | 152 |
19.c | even | 3 | 1 | inner | 95.5.m.a | ✓ | 152 |
95.m | odd | 12 | 1 | inner | 95.5.m.a | ✓ | 152 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.5.m.a | ✓ | 152 | 1.a | even | 1 | 1 | trivial |
95.5.m.a | ✓ | 152 | 5.c | odd | 4 | 1 | inner |
95.5.m.a | ✓ | 152 | 19.c | even | 3 | 1 | inner |
95.5.m.a | ✓ | 152 | 95.m | odd | 12 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(95, [\chi])\).