Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [95,5,Mod(31,95)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(95, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 5]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("95.31");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.j (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.82014649297\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Relative dimension: | \(28\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
31.1 | −6.63719 | + | 3.83198i | −10.1475 | + | 5.85866i | 21.3682 | − | 37.0108i | −5.59017 | − | 9.68246i | 44.9006 | − | 77.7701i | −16.0703 | 204.906i | 28.1478 | − | 48.7534i | 74.2060 | + | 42.8429i | ||||
31.2 | −6.61086 | + | 3.81678i | 13.0881 | − | 7.55645i | 21.1356 | − | 36.6080i | −5.59017 | − | 9.68246i | −57.6826 | + | 99.9092i | 85.5785 | 200.544i | 73.6998 | − | 127.652i | 73.9117 | + | 42.6729i | ||||
31.3 | −6.23297 | + | 3.59860i | −2.94312 | + | 1.69921i | 17.8999 | − | 31.0036i | 5.59017 | + | 9.68246i | 12.2296 | − | 21.1822i | 29.5142 | 142.503i | −34.7254 | + | 60.1461i | −69.6867 | − | 40.2336i | ||||
31.4 | −5.88213 | + | 3.39605i | 8.65585 | − | 4.99746i | 15.0663 | − | 26.0956i | 5.59017 | + | 9.68246i | −33.9432 | + | 58.7914i | −67.3617 | 95.9901i | 9.44913 | − | 16.3664i | −65.7642 | − | 37.9690i | ||||
31.5 | −4.60508 | + | 2.65874i | 4.43762 | − | 2.56206i | 6.13782 | − | 10.6310i | −5.59017 | − | 9.68246i | −13.6237 | + | 23.5970i | −5.72487 | − | 19.8042i | −27.3717 | + | 47.4092i | 51.4863 | + | 29.7256i | |||
31.6 | −4.58234 | + | 2.64562i | −13.8097 | + | 7.97306i | 5.99857 | − | 10.3898i | 5.59017 | + | 9.68246i | 42.1873 | − | 73.0706i | −82.6679 | − | 21.1801i | 86.6394 | − | 150.064i | −51.2321 | − | 29.5789i | |||
31.7 | −4.11184 | + | 2.37397i | −7.95849 | + | 4.59484i | 3.27149 | − | 5.66639i | 5.59017 | + | 9.68246i | 21.8160 | − | 37.7865i | 82.5345 | − | 44.9014i | 1.72504 | − | 2.98786i | −45.9718 | − | 26.5418i | |||
31.8 | −3.83785 | + | 2.21578i | −13.8578 | + | 8.00083i | 1.81940 | − | 3.15129i | −5.59017 | − | 9.68246i | 35.4562 | − | 61.4120i | 71.1453 | − | 54.7795i | 87.5266 | − | 151.600i | 42.9085 | + | 24.7732i | |||
31.9 | −2.65653 | + | 1.53375i | 14.4814 | − | 8.36083i | −3.29525 | + | 5.70754i | −5.59017 | − | 9.68246i | −25.6468 | + | 44.4215i | −75.8112 | − | 69.2962i | 99.3068 | − | 172.004i | 29.7009 | + | 17.1478i | |||
31.10 | −2.57403 | + | 1.48612i | −6.17418 | + | 3.56466i | −3.58290 | + | 6.20577i | −5.59017 | − | 9.68246i | 10.5950 | − | 18.3511i | −49.4906 | − | 68.8543i | −15.0863 | + | 26.1303i | 28.7786 | + | 16.6153i | |||
31.11 | −2.10496 | + | 1.21530i | −2.40033 | + | 1.38583i | −5.04610 | + | 8.74011i | 5.59017 | + | 9.68246i | 3.36839 | − | 5.83422i | −44.6809 | − | 63.4196i | −36.6590 | + | 63.4952i | −23.5341 | − | 13.5874i | |||
31.12 | −2.01601 | + | 1.16394i | 6.47528 | − | 3.73850i | −5.29048 | + | 9.16338i | 5.59017 | + | 9.68246i | −8.70280 | + | 15.0737i | 63.8069 | − | 61.8774i | −12.5472 | + | 21.7324i | −22.5396 | − | 13.0133i | |||
31.13 | −0.846897 | + | 0.488956i | 9.17027 | − | 5.29446i | −7.52184 | + | 13.0282i | −5.59017 | − | 9.68246i | −5.17752 | + | 8.96773i | 35.9556 | − | 30.3580i | 15.5626 | − | 26.9552i | 9.46860 | + | 5.46670i | |||
31.14 | −0.316593 | + | 0.182785i | −1.25869 | + | 0.726703i | −7.93318 | + | 13.7407i | −5.59017 | − | 9.68246i | 0.265661 | − | 0.460139i | 60.5460 | − | 11.6494i | −39.4438 | + | 68.3187i | 3.53962 | + | 2.04360i | |||
31.15 | 0.0632355 | − | 0.0365090i | 6.72433 | − | 3.88229i | −7.99733 | + | 13.8518i | 5.59017 | + | 9.68246i | 0.283477 | − | 0.490997i | −69.9052 | 2.33619i | −10.3556 | + | 17.9365i | 0.706994 | + | 0.408183i | ||||
31.16 | 1.29179 | − | 0.745814i | −11.0696 | + | 6.39105i | −6.88752 | + | 11.9295i | 5.59017 | + | 9.68246i | −9.53307 | + | 16.5118i | 25.4753 | 44.4133i | 41.1910 | − | 71.3450i | 14.4426 | + | 8.33845i | ||||
31.17 | 1.69789 | − | 0.980275i | 15.1828 | − | 8.76580i | −6.07812 | + | 10.5276i | 5.59017 | + | 9.68246i | 17.1858 | − | 29.7667i | 13.8465 | 55.2017i | 113.179 | − | 196.031i | 18.9829 | + | 10.9598i | ||||
31.18 | 1.71500 | − | 0.990155i | −13.9891 | + | 8.07663i | −6.03919 | + | 10.4602i | −5.59017 | − | 9.68246i | −15.9942 | + | 27.7028i | −45.3022 | 55.6039i | 89.9638 | − | 155.822i | −19.1743 | − | 11.0703i | ||||
31.19 | 2.23216 | − | 1.28874i | 2.68098 | − | 1.54786i | −4.67831 | + | 8.10308i | −5.59017 | − | 9.68246i | 3.98958 | − | 6.91015i | −75.7762 | 65.3561i | −35.7082 | + | 61.8485i | −24.9563 | − | 14.4085i | ||||
31.20 | 3.00735 | − | 1.73629i | 0.820719 | − | 0.473842i | −1.97058 | + | 3.41314i | 5.59017 | + | 9.68246i | 1.64546 | − | 2.85002i | 15.1496 | 69.2473i | −40.0509 | + | 69.3703i | 33.6232 | + | 19.4123i | ||||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.5.j.a | ✓ | 56 |
19.d | odd | 6 | 1 | inner | 95.5.j.a | ✓ | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.5.j.a | ✓ | 56 | 1.a | even | 1 | 1 | trivial |
95.5.j.a | ✓ | 56 | 19.d | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(95, [\chi])\).