Properties

Label 95.5.j
Level $95$
Weight $5$
Character orbit 95.j
Rep. character $\chi_{95}(31,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $56$
Newform subspaces $1$
Sturm bound $50$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 95.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(50\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(95, [\chi])\).

Total New Old
Modular forms 84 56 28
Cusp forms 76 56 20
Eisenstein series 8 0 8

Trace form

\( 56 q - 24 q^{3} + 242 q^{4} - 14 q^{6} + 100 q^{7} + 1032 q^{9} + 150 q^{10} - 192 q^{11} + 1242 q^{13} + 288 q^{14} - 2574 q^{16} - 78 q^{17} - 954 q^{19} - 1620 q^{21} - 1440 q^{22} + 462 q^{23} + 1292 q^{24}+ \cdots + 11706 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.5.j.a 95.j 19.d $56$ $9.820$ None 95.5.j.a \(0\) \(-24\) \(0\) \(100\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{5}^{\mathrm{old}}(95, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(95, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 2}\)