Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [95,5,Mod(69,95)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(95, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 5]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("95.69");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.h (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.82014649297\) |
Analytic rank: | \(0\) |
Dimension: | \(76\) |
Relative dimension: | \(38\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
69.1 | −3.77522 | − | 6.53887i | 6.96380 | + | 12.0616i | −20.5045 | + | 35.5148i | −1.04200 | + | 24.9783i | 52.5797 | − | 91.0706i | − | 48.2013i | 188.829 | −56.4889 | + | 97.8417i | 167.263 | − | 87.4848i | |||
69.2 | −3.76648 | − | 6.52374i | 3.11226 | + | 5.39059i | −20.3728 | + | 35.2867i | 0.802884 | − | 24.9871i | 23.4445 | − | 40.6071i | 75.6044i | 186.408 | 21.1277 | − | 36.5942i | −166.033 | + | 88.8757i | ||||
69.3 | −3.64078 | − | 6.30602i | −3.43435 | − | 5.94847i | −18.5106 | + | 32.0613i | 21.9779 | + | 11.9152i | −25.0075 | + | 43.3142i | 17.2327i | 153.067 | 16.9104 | − | 29.2897i | −4.87924 | − | 181.974i | ||||
69.4 | −3.54958 | − | 6.14806i | −6.01586 | − | 10.4198i | −17.1991 | + | 29.7897i | −24.2650 | + | 6.01734i | −42.7076 | + | 73.9716i | − | 15.4601i | 130.611 | −31.8810 | + | 55.2196i | 123.126 | + | 127.824i | |||
69.5 | −3.11910 | − | 5.40243i | −2.35284 | − | 4.07524i | −11.4575 | + | 19.8450i | 8.90373 | − | 23.3607i | −14.6775 | + | 25.4222i | − | 76.5970i | 43.1375 | 29.4283 | − | 50.9712i | −153.976 | + | 24.7625i | |||
69.6 | −3.00419 | − | 5.20342i | 3.88331 | + | 6.72609i | −10.0504 | + | 17.4077i | −21.8549 | − | 12.1394i | 23.3324 | − | 40.4129i | − | 30.4403i | 24.6386 | 10.3398 | − | 17.9091i | 2.49013 | + | 150.189i | |||
69.7 | −2.66296 | − | 4.61238i | 1.85207 | + | 3.20788i | −6.18271 | + | 10.7088i | −14.7427 | + | 20.1904i | 9.86398 | − | 17.0849i | 14.5505i | −19.3575 | 33.6397 | − | 58.2656i | 132.385 | + | 14.2324i | ||||
69.8 | −2.59162 | − | 4.48881i | −8.46267 | − | 14.6578i | −5.43295 | + | 9.41015i | 18.4325 | − | 16.8891i | −43.8640 | + | 75.9747i | 55.8877i | −26.6112 | −102.734 | + | 177.940i | −123.582 | − | 38.9699i | ||||
69.9 | −2.46490 | − | 4.26933i | 4.84646 | + | 8.39432i | −4.15145 | + | 7.19052i | 23.9835 | + | 7.05628i | 23.8921 | − | 41.3823i | 69.9627i | −37.9452 | −6.47639 | + | 11.2174i | −28.9913 | − | 119.787i | ||||
69.10 | −2.38931 | − | 4.13841i | 7.89144 | + | 13.6684i | −3.41764 | + | 5.91952i | 19.5580 | − | 15.5719i | 37.7102 | − | 65.3160i | − | 37.3600i | −43.7948 | −84.0496 | + | 145.578i | −111.173 | − | 43.7332i | |||
69.11 | −2.18954 | − | 3.79239i | −1.74795 | − | 3.02754i | −1.58817 | + | 2.75078i | 18.5029 | + | 16.8120i | −7.65442 | + | 13.2578i | − | 41.3991i | −56.1559 | 34.3893 | − | 59.5641i | 23.2448 | − | 106.981i | |||
69.12 | −1.92278 | − | 3.33035i | −2.90103 | − | 5.02473i | 0.605829 | − | 1.04933i | −21.7327 | − | 12.3567i | −11.1561 | + | 19.3229i | 80.9610i | −66.1885 | 23.6681 | − | 40.9943i | 0.635089 | + | 96.1369i | ||||
69.13 | −1.67979 | − | 2.90949i | −7.21014 | − | 12.4883i | 2.35658 | − | 4.08172i | −1.56715 | + | 24.9508i | −24.2231 | + | 41.9556i | − | 1.10616i | −69.5877 | −63.4722 | + | 109.937i | 75.2267 | − | 37.3526i | |||
69.14 | −1.11418 | − | 1.92982i | −1.03164 | − | 1.78686i | 5.51719 | − | 9.55605i | 13.1047 | − | 21.2901i | −2.29888 | + | 3.98178i | 5.41425i | −60.2425 | 38.3714 | − | 66.4613i | −55.6871 | − | 1.56873i | ||||
69.15 | −1.05148 | − | 1.82122i | 5.77301 | + | 9.99914i | 5.78877 | − | 10.0264i | −18.0468 | − | 17.3007i | 12.1404 | − | 21.0279i | − | 26.6350i | −57.9946 | −26.1553 | + | 45.3022i | −12.5325 | + | 51.0586i | |||
69.16 | −1.01799 | − | 1.76321i | −6.41362 | − | 11.1087i | 5.92739 | − | 10.2665i | −20.4757 | − | 14.3439i | −13.0580 | + | 22.6171i | − | 78.3466i | −56.7118 | −41.7691 | + | 72.3462i | −4.44726 | + | 50.7049i | |||
69.17 | −0.758009 | − | 1.31291i | 7.17678 | + | 12.4306i | 6.85085 | − | 11.8660i | −13.0699 | + | 21.3115i | 10.8801 | − | 18.8449i | 45.9657i | −45.0283 | −62.5124 | + | 108.275i | 37.8871 | + | 1.00530i | ||||
69.18 | −0.275605 | − | 0.477362i | 4.15531 | + | 7.19720i | 7.84808 | − | 13.5933i | 12.3494 | + | 21.7369i | 2.29045 | − | 3.96717i | − | 93.5433i | −17.4712 | 5.96685 | − | 10.3349i | 6.97282 | − | 11.8859i | |||
69.19 | −0.116045 | − | 0.200997i | −2.09799 | − | 3.63383i | 7.97307 | − | 13.8098i | −17.7122 | + | 17.6430i | −0.486925 | + | 0.843379i | − | 17.0392i | −7.41441 | 31.6968 | − | 54.9005i | 5.60161 | + | 1.51270i | |||
69.20 | 0.116045 | + | 0.200997i | 2.09799 | + | 3.63383i | 7.97307 | − | 13.8098i | 24.1354 | − | 6.51771i | −0.486925 | + | 0.843379i | 17.0392i | 7.41441 | 31.6968 | − | 54.9005i | 4.11084 | + | 4.09479i | ||||
See all 76 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
19.d | odd | 6 | 1 | inner |
95.h | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.5.h.a | ✓ | 76 |
5.b | even | 2 | 1 | inner | 95.5.h.a | ✓ | 76 |
19.d | odd | 6 | 1 | inner | 95.5.h.a | ✓ | 76 |
95.h | odd | 6 | 1 | inner | 95.5.h.a | ✓ | 76 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.5.h.a | ✓ | 76 | 1.a | even | 1 | 1 | trivial |
95.5.h.a | ✓ | 76 | 5.b | even | 2 | 1 | inner |
95.5.h.a | ✓ | 76 | 19.d | odd | 6 | 1 | inner |
95.5.h.a | ✓ | 76 | 95.h | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(95, [\chi])\).