Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [95,5,Mod(58,95)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(95, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([3, 0]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("95.58");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.82014649297\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(36\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
58.1 | −5.30665 | + | 5.30665i | 2.41397 | + | 2.41397i | − | 40.3212i | −2.18828 | + | 24.9040i | −25.6202 | −42.3343 | + | 42.3343i | 129.064 | + | 129.064i | − | 69.3455i | −120.545 | − | 143.770i | ||||
58.2 | −5.12256 | + | 5.12256i | −5.46800 | − | 5.46800i | − | 36.4812i | −11.8750 | − | 21.9996i | 56.0203 | 25.9577 | − | 25.9577i | 104.916 | + | 104.916i | − | 21.2020i | 173.525 | + | 51.8639i | ||||
58.3 | −4.90994 | + | 4.90994i | 8.46078 | + | 8.46078i | − | 32.2150i | −23.3481 | − | 8.93675i | −83.0838 | 42.1265 | − | 42.1265i | 79.6148 | + | 79.6148i | 62.1695i | 158.517 | − | 70.7589i | |||||
58.4 | −4.79384 | + | 4.79384i | 5.53698 | + | 5.53698i | − | 29.9618i | 14.7652 | − | 20.1740i | −53.0868 | −23.2725 | + | 23.2725i | 66.9306 | + | 66.9306i | − | 19.6836i | 25.9287 | + | 167.493i | ||||
58.5 | −4.78039 | + | 4.78039i | −9.05561 | − | 9.05561i | − | 29.7042i | 24.9964 | + | 0.425630i | 86.5786 | −15.8565 | + | 15.8565i | 65.5112 | + | 65.5112i | 83.0080i | −121.527 | + | 117.458i | |||||
58.6 | −4.23855 | + | 4.23855i | −4.93728 | − | 4.93728i | − | 19.9307i | −13.0941 | + | 21.2966i | 41.8539 | 40.2634 | − | 40.2634i | 16.6604 | + | 16.6604i | − | 32.2465i | −34.7665 | − | 145.767i | ||||
58.7 | −4.16421 | + | 4.16421i | 12.0620 | + | 12.0620i | − | 18.6813i | 16.7563 | + | 18.5533i | −100.457 | 20.5817 | − | 20.5817i | 11.1654 | + | 11.1654i | 209.983i | −147.037 | − | 7.48303i | |||||
58.8 | −3.39342 | + | 3.39342i | −5.31605 | − | 5.31605i | − | 7.03062i | −22.3933 | − | 11.1148i | 36.0792 | −55.1321 | + | 55.1321i | −30.4369 | − | 30.4369i | − | 24.4792i | 113.707 | − | 38.2728i | ||||
58.9 | −3.28518 | + | 3.28518i | 4.14472 | + | 4.14472i | − | 5.58480i | 14.5751 | − | 20.3118i | −27.2323 | −2.29458 | + | 2.29458i | −34.2158 | − | 34.2158i | − | 46.6426i | 18.8460 | + | 114.609i | ||||
58.10 | −3.11698 | + | 3.11698i | −0.688627 | − | 0.688627i | − | 3.43115i | 22.0384 | + | 11.8030i | 4.29288 | 37.9639 | − | 37.9639i | −39.1769 | − | 39.1769i | − | 80.0516i | −105.483 | + | 31.9037i | ||||
58.11 | −2.75499 | + | 2.75499i | 5.87847 | + | 5.87847i | 0.820023i | −23.5841 | + | 8.29401i | −32.3903 | −5.74658 | + | 5.74658i | −46.3391 | − | 46.3391i | − | 11.8872i | 42.1241 | − | 87.8240i | |||||
58.12 | −2.51989 | + | 2.51989i | −12.1685 | − | 12.1685i | 3.30029i | −4.70504 | + | 24.5533i | 61.3266 | −17.9310 | + | 17.9310i | −48.6346 | − | 48.6346i | 215.145i | −50.0154 | − | 73.7277i | ||||||
58.13 | −2.19355 | + | 2.19355i | −10.8006 | − | 10.8006i | 6.37670i | −2.80757 | − | 24.8419i | 47.3831 | 47.9842 | − | 47.9842i | −49.0844 | − | 49.0844i | 152.305i | 60.6503 | + | 48.3332i | ||||||
58.14 | −1.77561 | + | 1.77561i | 5.55126 | + | 5.55126i | 9.69442i | 12.8047 | + | 21.4719i | −19.7137 | −61.7979 | + | 61.7979i | −45.6233 | − | 45.6233i | − | 19.3671i | −60.8617 | − | 15.3896i | |||||
58.15 | −1.29380 | + | 1.29380i | 12.6620 | + | 12.6620i | 12.6522i | −5.24005 | − | 24.4447i | −32.7642 | −35.2660 | + | 35.2660i | −37.0701 | − | 37.0701i | 239.653i | 38.4060 | + | 24.8469i | ||||||
58.16 | −1.16294 | + | 1.16294i | 3.01850 | + | 3.01850i | 13.2951i | −12.2952 | − | 21.7676i | −7.02068 | 55.8545 | − | 55.8545i | −34.0685 | − | 34.0685i | − | 62.7773i | 39.6130 | + | 11.0159i | |||||
58.17 | −0.248255 | + | 0.248255i | −4.68699 | − | 4.68699i | 15.8767i | −20.9216 | + | 13.6853i | 2.32714 | 9.28930 | − | 9.28930i | −7.91356 | − | 7.91356i | − | 37.0643i | 1.79645 | − | 8.59133i | |||||
58.18 | −0.229865 | + | 0.229865i | −3.27734 | − | 3.27734i | 15.8943i | 7.94023 | + | 23.7055i | 1.50669 | −1.23879 | + | 1.23879i | −7.33139 | − | 7.33139i | − | 59.5181i | −7.27426 | − | 3.62390i | |||||
58.19 | 0.246555 | − | 0.246555i | 8.34670 | + | 8.34670i | 15.8784i | 24.9735 | − | 1.15071i | 4.11585 | 47.6422 | − | 47.6422i | 7.85980 | + | 7.85980i | 58.3348i | 5.87364 | − | 6.44106i | ||||||
58.20 | 0.664466 | − | 0.664466i | 8.70016 | + | 8.70016i | 15.1170i | −12.3025 | + | 21.7635i | 11.5619 | 22.4410 | − | 22.4410i | 20.6762 | + | 20.6762i | 70.3857i | 6.28653 | + | 22.6357i | ||||||
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.5.f.a | ✓ | 72 |
5.c | odd | 4 | 1 | inner | 95.5.f.a | ✓ | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.5.f.a | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
95.5.f.a | ✓ | 72 | 5.c | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(95, [\chi])\).