Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [95,5,Mod(94,95)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(95, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("95.94");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.82014649297\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
94.1 | −7.11740 | 7.28479 | 34.6574 | 1.40879 | − | 24.9603i | −51.8488 | − | 62.0168i | −132.792 | −27.9318 | −10.0269 | + | 177.652i | |||||||||||||
94.2 | −7.11740 | 7.28479 | 34.6574 | 1.40879 | + | 24.9603i | −51.8488 | 62.0168i | −132.792 | −27.9318 | −10.0269 | − | 177.652i | ||||||||||||||
94.3 | −6.11453 | 11.8086 | 21.3875 | −14.6232 | − | 20.2771i | −72.2040 | 81.6457i | −32.9421 | 58.4427 | 89.4141 | + | 123.985i | ||||||||||||||
94.4 | −6.11453 | 11.8086 | 21.3875 | −14.6232 | + | 20.2771i | −72.2040 | − | 81.6457i | −32.9421 | 58.4427 | 89.4141 | − | 123.985i | |||||||||||||
94.5 | −5.60144 | −13.7439 | 15.3761 | −1.78135 | − | 24.9365i | 76.9855 | 40.3374i | 3.49448 | 107.894 | 9.97810 | + | 139.680i | ||||||||||||||
94.6 | −5.60144 | −13.7439 | 15.3761 | −1.78135 | + | 24.9365i | 76.9855 | − | 40.3374i | 3.49448 | 107.894 | 9.97810 | − | 139.680i | |||||||||||||
94.7 | −3.99503 | −2.13646 | −0.0397685 | −21.8919 | − | 12.0726i | 8.53521 | − | 58.2329i | 64.0793 | −76.4355 | 87.4585 | + | 48.2302i | |||||||||||||
94.8 | −3.99503 | −2.13646 | −0.0397685 | −21.8919 | + | 12.0726i | 8.53521 | 58.2329i | 64.0793 | −76.4355 | 87.4585 | − | 48.2302i | ||||||||||||||
94.9 | −3.44072 | 4.95866 | −4.16145 | 16.9001 | − | 18.4225i | −17.0613 | 3.69804i | 69.3699 | −56.4117 | −58.1484 | + | 63.3865i | ||||||||||||||
94.10 | −3.44072 | 4.95866 | −4.16145 | 16.9001 | + | 18.4225i | −17.0613 | − | 3.69804i | 69.3699 | −56.4117 | −58.1484 | − | 63.3865i | |||||||||||||
94.11 | −2.18180 | −12.9286 | −11.2398 | 20.9669 | − | 13.6157i | 28.2076 | − | 93.9000i | 59.4316 | 86.1488 | −45.7455 | + | 29.7067i | |||||||||||||
94.12 | −2.18180 | −12.9286 | −11.2398 | 20.9669 | + | 13.6157i | 28.2076 | 93.9000i | 59.4316 | 86.1488 | −45.7455 | − | 29.7067i | ||||||||||||||
94.13 | −0.141230 | −9.81294 | −15.9801 | −11.4794 | − | 22.2086i | 1.38588 | 7.99045i | 4.51655 | 15.2937 | 1.62123 | + | 3.13653i | ||||||||||||||
94.14 | −0.141230 | −9.81294 | −15.9801 | −11.4794 | + | 22.2086i | 1.38588 | − | 7.99045i | 4.51655 | 15.2937 | 1.62123 | − | 3.13653i | |||||||||||||
94.15 | 0.141230 | 9.81294 | −15.9801 | −11.4794 | − | 22.2086i | 1.38588 | 7.99045i | −4.51655 | 15.2937 | −1.62123 | − | 3.13653i | ||||||||||||||
94.16 | 0.141230 | 9.81294 | −15.9801 | −11.4794 | + | 22.2086i | 1.38588 | − | 7.99045i | −4.51655 | 15.2937 | −1.62123 | + | 3.13653i | |||||||||||||
94.17 | 2.18180 | 12.9286 | −11.2398 | 20.9669 | − | 13.6157i | 28.2076 | − | 93.9000i | −59.4316 | 86.1488 | 45.7455 | − | 29.7067i | |||||||||||||
94.18 | 2.18180 | 12.9286 | −11.2398 | 20.9669 | + | 13.6157i | 28.2076 | 93.9000i | −59.4316 | 86.1488 | 45.7455 | + | 29.7067i | ||||||||||||||
94.19 | 3.44072 | −4.95866 | −4.16145 | 16.9001 | − | 18.4225i | −17.0613 | 3.69804i | −69.3699 | −56.4117 | 58.1484 | − | 63.3865i | ||||||||||||||
94.20 | 3.44072 | −4.95866 | −4.16145 | 16.9001 | + | 18.4225i | −17.0613 | − | 3.69804i | −69.3699 | −56.4117 | 58.1484 | + | 63.3865i | |||||||||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
19.b | odd | 2 | 1 | inner |
95.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.5.d.e | ✓ | 28 |
5.b | even | 2 | 1 | inner | 95.5.d.e | ✓ | 28 |
19.b | odd | 2 | 1 | inner | 95.5.d.e | ✓ | 28 |
95.d | odd | 2 | 1 | inner | 95.5.d.e | ✓ | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.5.d.e | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
95.5.d.e | ✓ | 28 | 5.b | even | 2 | 1 | inner |
95.5.d.e | ✓ | 28 | 19.b | odd | 2 | 1 | inner |
95.5.d.e | ✓ | 28 | 95.d | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{14} - 152 T_{2}^{12} + 8869 T_{2}^{10} - 250478 T_{2}^{8} + 3543224 T_{2}^{6} - 23350448 T_{2}^{4} + \cdots - 1066080 \)
acting on \(S_{5}^{\mathrm{new}}(95, [\chi])\).