Properties

Label 95.5.d.d
Level $95$
Weight $5$
Character orbit 95.d
Self dual yes
Analytic conductor $9.820$
Analytic rank $0$
Dimension $4$
CM discriminant -95
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [95,5,Mod(94,95)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(95, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("95.94");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 95.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.82014649297\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{10}, \sqrt{38})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 24x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1) q^{2} + ( - 3 \beta_{2} + 4 \beta_1) q^{3} + (3 \beta_{3} + 16) q^{4} - 25 q^{5} + (5 \beta_{3} + 23) q^{6} + (6 \beta_{2} + 45 \beta_1) q^{8} + ( - 8 \beta_{3} + 81) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{2} + \beta_1) q^{2} + ( - 3 \beta_{2} + 4 \beta_1) q^{3} + (3 \beta_{3} + 16) q^{4} - 25 q^{5} + (5 \beta_{3} + 23) q^{6} + (6 \beta_{2} + 45 \beta_1) q^{8} + ( - 8 \beta_{3} + 81) q^{9} + ( - 25 \beta_{2} - 25 \beta_1) q^{10} - 24 \beta_{3} q^{11} + (81 \beta_{2} + 34 \beta_1) q^{12} + ( - 53 \beta_{2} + 76 \beta_1) q^{13} + (75 \beta_{2} - 100 \beta_1) q^{15} + (48 \beta_{3} + 599) q^{16} + (65 \beta_{2} - 39 \beta_1) q^{18} - 361 q^{19} + ( - 75 \beta_{3} - 400) q^{20} + ( - 48 \beta_{2} - 360 \beta_1) q^{22} + (69 \beta_{3} + 1425) q^{24} + 625 q^{25} + (99 \beta_{3} + 497) q^{26} + ( - 344 \beta_{2} + 80 \beta_1) q^{27} + ( - 125 \beta_{3} - 575) q^{30} + (599 \beta_{2} + 599 \beta_1) q^{32} + ( - 1032 \beta_{2} + 240 \beta_1) q^{33} + (115 \beta_{3} - 984) q^{36} + (509 \beta_{2} + 164 \beta_1) q^{37} + ( - 361 \beta_{2} - 361 \beta_1) q^{38} + ( - 136 \beta_{3} + 3038) q^{39} + ( - 150 \beta_{2} - 1125 \beta_1) q^{40} + ( - 384 \beta_{3} - 6840) q^{44} + (200 \beta_{3} - 2025) q^{45} + (267 \beta_{2} + 1916 \beta_1) q^{48} + 2401 q^{49} + (625 \beta_{2} + 625 \beta_1) q^{50} + (1543 \beta_{2} + 766 \beta_1) q^{52} + (461 \beta_{2} - 1276 \beta_1) q^{53} + ( - 184 \beta_{3} - 3800) q^{54} + 600 \beta_{3} q^{55} + (1083 \beta_{2} - 1444 \beta_1) q^{57} + ( - 2025 \beta_{2} - 850 \beta_1) q^{60} - 216 \beta_{3} q^{61} + (1029 \beta_{3} + 9584) q^{64} + (1325 \beta_{2} - 1900 \beta_1) q^{65} + ( - 552 \beta_{3} - 11400) q^{66} + ( - 2117 \beta_{2} + 1516 \beta_1) q^{67} + ( - 1794 \beta_{2} + 1365 \beta_1) q^{72} + (837 \beta_{3} + 10423) q^{74} + ( - 1875 \beta_{2} + 2500 \beta_1) q^{75} + ( - 1083 \beta_{3} - 5776) q^{76} + (2766 \beta_{2} + 998 \beta_1) q^{78} + ( - 1200 \beta_{3} - 14975) q^{80} + ( - 648 \beta_{3} - 481) q^{81} + ( - 6840 \beta_{2} - 6840 \beta_1) q^{88} + ( - 1625 \beta_{2} + 975 \beta_1) q^{90} + 9025 q^{95} + (2995 \beta_{3} + 13777) q^{96} + (4685 \beta_{2} - 2476 \beta_1) q^{97} + (2401 \beta_{2} + 2401 \beta_1) q^{98} + ( - 1944 \beta_{3} + 18240) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 64 q^{4} - 100 q^{5} + 92 q^{6} + 324 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 64 q^{4} - 100 q^{5} + 92 q^{6} + 324 q^{9} + 2396 q^{16} - 1444 q^{19} - 1600 q^{20} + 5700 q^{24} + 2500 q^{25} + 1988 q^{26} - 2300 q^{30} - 3936 q^{36} + 12152 q^{39} - 27360 q^{44} - 8100 q^{45} + 9604 q^{49} - 15200 q^{54} + 38336 q^{64} - 45600 q^{66} + 41692 q^{74} - 23104 q^{76} - 59900 q^{80} - 1924 q^{81} + 36100 q^{95} + 55108 q^{96} + 72960 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 24x^{2} + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 17\nu ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 12 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 7\beta_{2} + 17\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
94.1
−4.66335
1.50107
−1.50107
4.66335
−7.82562 −9.16655 45.2404 −25.0000 71.7340 0 −228.824 3.02565 195.641
94.2 −1.66121 15.4911 −13.2404 −25.0000 −25.7340 0 48.5744 158.974 41.5302
94.3 1.66121 −15.4911 −13.2404 −25.0000 −25.7340 0 −48.5744 158.974 −41.5302
94.4 7.82562 9.16655 45.2404 −25.0000 71.7340 0 228.824 3.02565 −195.641
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
95.d odd 2 1 CM by \(\Q(\sqrt{-95}) \)
5.b even 2 1 inner
19.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 95.5.d.d 4
5.b even 2 1 inner 95.5.d.d 4
19.b odd 2 1 inner 95.5.d.d 4
95.d odd 2 1 CM 95.5.d.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.5.d.d 4 1.a even 1 1 trivial
95.5.d.d 4 5.b even 2 1 inner
95.5.d.d 4 19.b odd 2 1 inner
95.5.d.d 4 95.d odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 64T_{2}^{2} + 169 \) acting on \(S_{5}^{\mathrm{new}}(95, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 64T^{2} + 169 \) Copy content Toggle raw display
$3$ \( T^{4} - 324 T^{2} + 20164 \) Copy content Toggle raw display
$5$ \( (T + 25)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 54720)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 114244 T^{2} + \cdots + 2769074884 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T + 361)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 7496644 T^{2} + \cdots + 10480098340804 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 229655293801924 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 4432320)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 80604484 T^{2} + \cdots + 11320681202884 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} - 354117124 T^{2} + \cdots + 36\!\cdots\!24 \) Copy content Toggle raw display
show more
show less