Newspace parameters
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.82014649297\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-19}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 5 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + 3\sqrt{-19})\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).
\(n\) | \(21\) | \(77\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
94.1 |
|
0 | 0 | −16.0000 | 15.5000 | − | 19.6150i | 0 | 65.3835i | 0 | −81.0000 | 0 | ||||||||||||||||||||||
94.2 | 0 | 0 | −16.0000 | 15.5000 | + | 19.6150i | 0 | − | 65.3835i | 0 | −81.0000 | 0 | ||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-19}) \) |
5.b | even | 2 | 1 | inner |
95.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.5.d.a | ✓ | 2 |
5.b | even | 2 | 1 | inner | 95.5.d.a | ✓ | 2 |
19.b | odd | 2 | 1 | CM | 95.5.d.a | ✓ | 2 |
95.d | odd | 2 | 1 | inner | 95.5.d.a | ✓ | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.5.d.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
95.5.d.a | ✓ | 2 | 5.b | even | 2 | 1 | inner |
95.5.d.a | ✓ | 2 | 19.b | odd | 2 | 1 | CM |
95.5.d.a | ✓ | 2 | 95.d | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} \)
acting on \(S_{5}^{\mathrm{new}}(95, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} \)
$5$
\( T^{2} - 31T + 625 \)
$7$
\( T^{2} + 4275 \)
$11$
\( (T - 233)^{2} \)
$13$
\( T^{2} \)
$17$
\( T^{2} + 209475 \)
$19$
\( (T - 361)^{2} \)
$23$
\( T^{2} + 1094400 \)
$29$
\( T^{2} \)
$31$
\( T^{2} \)
$37$
\( T^{2} \)
$41$
\( T^{2} \)
$43$
\( T^{2} + 1235475 \)
$47$
\( T^{2} + 18061875 \)
$53$
\( T^{2} \)
$59$
\( T^{2} \)
$61$
\( (T + 3167)^{2} \)
$67$
\( T^{2} \)
$71$
\( T^{2} \)
$73$
\( T^{2} + 12931875 \)
$79$
\( T^{2} \)
$83$
\( T^{2} + 157593600 \)
$89$
\( T^{2} \)
$97$
\( T^{2} \)
show more
show less