Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [95,5,Mod(56,95)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(95, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("95.56");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.82014649297\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
56.1 | − | 7.92395i | − | 5.43565i | −46.7890 | 11.1803 | −43.0718 | −60.1635 | 243.970i | 51.4538 | − | 88.5925i | |||||||||||||||
56.2 | − | 7.45519i | 11.0671i | −39.5799 | −11.1803 | 82.5076 | 21.0582 | 175.793i | −41.4815 | 83.3516i | |||||||||||||||||
56.3 | − | 6.90314i | − | 16.4787i | −31.6533 | −11.1803 | −113.755 | 57.7266 | 108.057i | −190.547 | 77.1794i | ||||||||||||||||
56.4 | − | 6.39140i | − | 4.27611i | −24.8500 | −11.1803 | −27.3303 | −38.7085 | 56.5639i | 62.7149 | 71.4580i | ||||||||||||||||
56.5 | − | 6.32523i | 3.88173i | −24.0086 | 11.1803 | 24.5529 | 86.4193 | 50.6561i | 65.9322 | − | 70.7183i | ||||||||||||||||
56.6 | − | 5.90838i | 15.4645i | −18.9089 | 11.1803 | 91.3703 | −35.5188 | 17.1871i | −158.152 | − | 66.0577i | ||||||||||||||||
56.7 | − | 4.90974i | 9.78357i | −8.10557 | −11.1803 | 48.0348 | −28.2223 | − | 38.7596i | −14.7183 | 54.8926i | ||||||||||||||||
56.8 | − | 4.66049i | − | 13.7041i | −5.72016 | 11.1803 | −63.8680 | −20.1107 | − | 47.9091i | −106.804 | − | 52.1059i | ||||||||||||||
56.9 | − | 4.17612i | 4.97310i | −1.43996 | 11.1803 | 20.7682 | −77.5528 | − | 60.8044i | 56.2683 | − | 46.6904i | |||||||||||||||
56.10 | − | 2.69165i | − | 5.53366i | 8.75502 | −11.1803 | −14.8947 | 68.1779 | − | 66.6319i | 50.3786 | 30.0936i | |||||||||||||||
56.11 | − | 2.13541i | 5.20668i | 11.4400 | −11.1803 | 11.1184 | −3.77875 | − | 58.5956i | 53.8905 | 23.8746i | ||||||||||||||||
56.12 | − | 1.97674i | − | 8.87634i | 12.0925 | 11.1803 | −17.5462 | 40.4386 | − | 55.5315i | 2.21056 | − | 22.1006i | ||||||||||||||
56.13 | − | 1.73387i | − | 13.8338i | 12.9937 | −11.1803 | −23.9861 | −74.4203 | − | 50.2714i | −110.374 | 19.3853i | |||||||||||||||
56.14 | − | 1.49194i | 8.10997i | 13.7741 | 11.1803 | 12.0996 | 14.6549 | − | 44.4211i | 15.2284 | − | 16.6803i | |||||||||||||||
56.15 | 1.49194i | − | 8.10997i | 13.7741 | 11.1803 | 12.0996 | 14.6549 | 44.4211i | 15.2284 | 16.6803i | |||||||||||||||||
56.16 | 1.73387i | 13.8338i | 12.9937 | −11.1803 | −23.9861 | −74.4203 | 50.2714i | −110.374 | − | 19.3853i | |||||||||||||||||
56.17 | 1.97674i | 8.87634i | 12.0925 | 11.1803 | −17.5462 | 40.4386 | 55.5315i | 2.21056 | 22.1006i | ||||||||||||||||||
56.18 | 2.13541i | − | 5.20668i | 11.4400 | −11.1803 | 11.1184 | −3.77875 | 58.5956i | 53.8905 | − | 23.8746i | ||||||||||||||||
56.19 | 2.69165i | 5.53366i | 8.75502 | −11.1803 | −14.8947 | 68.1779 | 66.6319i | 50.3786 | − | 30.0936i | |||||||||||||||||
56.20 | 4.17612i | − | 4.97310i | −1.43996 | 11.1803 | 20.7682 | −77.5528 | 60.8044i | 56.2683 | 46.6904i | |||||||||||||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.5.c.a | ✓ | 28 |
19.b | odd | 2 | 1 | inner | 95.5.c.a | ✓ | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.5.c.a | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
95.5.c.a | ✓ | 28 | 19.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(95, [\chi])\).