Properties

Label 95.5.c
Level $95$
Weight $5$
Character orbit 95.c
Rep. character $\chi_{95}(56,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $1$
Sturm bound $50$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 95.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(50\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(95, [\chi])\).

Total New Old
Modular forms 42 28 14
Cusp forms 38 28 10
Eisenstein series 4 0 4

Trace form

\( 28 q - 284 q^{4} - 28 q^{6} - 100 q^{7} - 528 q^{9} + 192 q^{11} + 2532 q^{16} - 588 q^{17} - 168 q^{19} - 1092 q^{23} + 148 q^{24} + 3500 q^{25} - 2820 q^{26} + 892 q^{28} + 1400 q^{30} - 1200 q^{35} + 11248 q^{36}+ \cdots - 39240 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.5.c.a 95.c 19.b $28$ $9.820$ None 95.5.c.a \(0\) \(0\) \(0\) \(-100\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{5}^{\mathrm{old}}(95, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(95, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 2}\)