Defining parameters
Level: | \( N \) | = | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | = | \( 5 \) |
Nonzero newspaces: | \( 9 \) | ||
Newform subspaces: | \( 13 \) | ||
Sturm bound: | \(3600\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(95))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1512 | 1362 | 150 |
Cusp forms | 1368 | 1262 | 106 |
Eisenstein series | 144 | 100 | 44 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(95))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(95))\) into lower level spaces
\( S_{5}^{\mathrm{old}}(\Gamma_1(95)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 2}\)