Properties

Label 95.4.e.b
Level $95$
Weight $4$
Character orbit 95.e
Analytic conductor $5.605$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [95,4,Mod(11,95)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(95, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("95.11");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 95.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60518145055\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 3 x^{17} + 64 x^{16} - 83 x^{15} + 2369 x^{14} - 2209 x^{13} + 52787 x^{12} - 15807 x^{11} + \cdots + 156250000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} - \beta_1 + 1) q^{2} + \beta_{11} q^{3} + (\beta_{6} + 6 \beta_{4} + \cdots - \beta_1) q^{4} + ( - 5 \beta_{4} - 5) q^{5} + (\beta_{11} + \beta_{10} + \cdots - \beta_1) q^{6} + (\beta_{14} - 5) q^{7}+ \cdots + ( - 9 \beta_{17} - 40 \beta_{16} + \cdots - 211 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 6 q^{2} + 2 q^{3} - 50 q^{4} - 45 q^{5} + 22 q^{6} - 90 q^{7} - 222 q^{8} - 115 q^{9} + 30 q^{10} - 54 q^{11} - 208 q^{12} + 88 q^{13} - 6 q^{14} + 10 q^{15} - 270 q^{16} - 174 q^{17} - 382 q^{18}+ \cdots + 557 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{18} - 3 x^{17} + 64 x^{16} - 83 x^{15} + 2369 x^{14} - 2209 x^{13} + 52787 x^{12} - 15807 x^{11} + \cdots + 156250000 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 34\!\cdots\!95 \nu^{17} + \cdots + 30\!\cdots\!00 ) / 32\!\cdots\!39 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 13\!\cdots\!55 \nu^{17} + \cdots + 46\!\cdots\!07 ) / 32\!\cdots\!39 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 24\!\cdots\!37 \nu^{17} + \cdots - 31\!\cdots\!00 ) / 40\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 13\!\cdots\!43 \nu^{17} + \cdots + 22\!\cdots\!00 ) / 39\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 29\!\cdots\!81 \nu^{17} + \cdots - 12\!\cdots\!00 ) / 40\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 83\!\cdots\!37 \nu^{17} + \cdots + 69\!\cdots\!00 ) / 49\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 68\!\cdots\!89 \nu^{17} + \cdots - 24\!\cdots\!20 ) / 39\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 44\!\cdots\!33 \nu^{17} + \cdots + 68\!\cdots\!00 ) / 24\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 77\!\cdots\!43 \nu^{17} + \cdots + 23\!\cdots\!00 ) / 39\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 13\!\cdots\!53 \nu^{17} + \cdots - 12\!\cdots\!00 ) / 49\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 82\!\cdots\!43 \nu^{17} + \cdots - 21\!\cdots\!60 ) / 19\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 67\!\cdots\!09 \nu^{17} + \cdots - 63\!\cdots\!00 ) / 12\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 47\!\cdots\!71 \nu^{17} + \cdots + 14\!\cdots\!60 ) / 39\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 29\!\cdots\!61 \nu^{17} + \cdots - 99\!\cdots\!20 ) / 19\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 37\!\cdots\!69 \nu^{17} + \cdots + 38\!\cdots\!00 ) / 24\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 24\!\cdots\!48 \nu^{17} + \cdots - 27\!\cdots\!00 ) / 12\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + 13\beta_{4} + \beta_{3} - \beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{12} + 2\beta_{10} + \beta_{3} - 21\beta_{2} - 9 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{13} - 3\beta_{11} + \beta_{9} - 2\beta_{7} - 28\beta_{6} - 265\beta_{4} - 44\beta _1 - 265 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 2 \beta_{16} + 2 \beta_{14} + 36 \beta_{13} - 36 \beta_{12} - 83 \beta_{11} - 83 \beta_{10} + \cdots - 519 \beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 4 \beta_{15} + 6 \beta_{14} - 113 \beta_{12} - 244 \beta_{10} + 64 \beta_{8} + 92 \beta_{5} + \cdots + 6340 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 8 \beta_{17} + 130 \beta_{16} - 1147 \beta_{13} + 3003 \beta_{11} - 295 \beta_{9} + 472 \beta_{7} + \cdots + 16381 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 252 \beta_{17} + 476 \beta_{16} + 252 \beta_{15} - 476 \beta_{14} - 4587 \beta_{13} + \cdots + 54124 \beta_1 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 700 \beta_{15} - 5778 \beta_{14} + 36169 \beta_{12} + 104594 \beta_{10} - 14359 \beta_{8} + \cdots - 578391 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 10856 \beta_{17} - 24340 \beta_{16} + 166606 \beta_{13} - 486688 \beta_{11} + 112287 \beta_{9} + \cdots - 4738475 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 37824 \beta_{17} - 221946 \beta_{16} - 37824 \beta_{15} + 221946 \beta_{14} + 1151139 \beta_{13} + \cdots - 12325457 \beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 406068 \beta_{15} + 1031914 \beta_{14} - 5777373 \beta_{12} - 18132635 \beta_{10} + 4090195 \beta_{8} + \cdots + 141639062 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 1657760 \beta_{17} + 7960612 \beta_{16} - 37058866 \beta_{13} + 120920536 \beta_{11} + \cdots + 669826090 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 14263464 \beta_{17} + 39655230 \beta_{16} + 14263464 \beta_{15} - 39655230 \beta_{14} + \cdots + 2018571725 \beta_1 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 65046996 \beta_{15} - 275648254 \beta_{14} + 1204401670 \beta_{12} + 4059380662 \beta_{10} + \cdots - 22428479932 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 486249512 \beta_{17} - 1440287230 \beta_{16} + 6583155344 \beta_{13} - 22285338986 \beta_{11} + \cdots - 139687389821 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 2394324948 \beta_{17} - 9365554010 \beta_{16} - 2394324948 \beta_{15} + 9365554010 \beta_{14} + \cdots - 399419240547 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(\beta_{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1
2.87881 4.98625i
2.28693 3.96108i
1.85387 3.21100i
0.585600 1.01429i
0.548949 0.950808i
−1.05500 + 1.82730i
−1.24804 + 2.16167i
−2.09053 + 3.62091i
−2.26060 + 3.91547i
2.87881 + 4.98625i
2.28693 + 3.96108i
1.85387 + 3.21100i
0.585600 + 1.01429i
0.548949 + 0.950808i
−1.05500 1.82730i
−1.24804 2.16167i
−2.09053 3.62091i
−2.26060 3.91547i
−2.37881 + 4.12022i 3.90669 6.76659i −7.31750 12.6743i −2.50000 + 4.33013i 18.5866 + 32.1929i −9.75335 31.5668 −17.0245 29.4873i −11.8941 20.6011i
11.2 −1.78693 + 3.09506i −2.87389 + 4.97773i −2.38626 4.13313i −2.50000 + 4.33013i −10.2709 17.7897i −12.7820 −11.5346 −3.01852 5.22822i −8.93467 15.4753i
11.3 −1.35387 + 2.34498i 2.16510 3.75006i 0.334056 + 0.578603i −2.50000 + 4.33013i 5.86254 + 10.1542i 9.08880 −23.4710 4.12469 + 7.14417i −6.76936 11.7249i
11.4 −0.0856000 + 0.148263i 0.0597169 0.103433i 3.98535 + 6.90282i −2.50000 + 4.33013i 0.0102235 + 0.0177077i −29.8703 −2.73418 13.4929 + 23.3703i −0.428000 0.741317i
11.5 −0.0489495 + 0.0847830i −3.79409 + 6.57155i 3.99521 + 6.91990i −2.50000 + 4.33013i −0.371437 0.643348i 18.5564 −1.56545 −15.2902 26.4834i −0.244747 0.423915i
11.6 1.55500 2.69333i −1.90691 + 3.30286i −0.836019 1.44803i −2.50000 + 4.33013i 5.93046 + 10.2719i 5.61900 19.6799 6.22742 + 10.7862i 7.77498 + 13.4667i
11.7 1.74804 3.02770i 4.62018 8.00239i −2.11129 3.65686i −2.50000 + 4.33013i −16.1525 27.9770i −29.1065 13.2062 −29.1921 50.5622i 8.74020 + 15.1385i
11.8 2.59053 4.48694i 2.66870 4.62232i −9.42174 16.3189i −2.50000 + 4.33013i −13.8267 23.9485i 30.6349 −56.1808 −0.743882 1.28844i 12.9527 + 22.4347i
11.9 2.76060 4.78150i −3.84550 + 6.66060i −11.2418 19.4714i −2.50000 + 4.33013i 21.2318 + 36.7745i −27.3870 −79.9668 −16.0758 27.8440i 13.8030 + 23.9075i
26.1 −2.37881 4.12022i 3.90669 + 6.76659i −7.31750 + 12.6743i −2.50000 4.33013i 18.5866 32.1929i −9.75335 31.5668 −17.0245 + 29.4873i −11.8941 + 20.6011i
26.2 −1.78693 3.09506i −2.87389 4.97773i −2.38626 + 4.13313i −2.50000 4.33013i −10.2709 + 17.7897i −12.7820 −11.5346 −3.01852 + 5.22822i −8.93467 + 15.4753i
26.3 −1.35387 2.34498i 2.16510 + 3.75006i 0.334056 0.578603i −2.50000 4.33013i 5.86254 10.1542i 9.08880 −23.4710 4.12469 7.14417i −6.76936 + 11.7249i
26.4 −0.0856000 0.148263i 0.0597169 + 0.103433i 3.98535 6.90282i −2.50000 4.33013i 0.0102235 0.0177077i −29.8703 −2.73418 13.4929 23.3703i −0.428000 + 0.741317i
26.5 −0.0489495 0.0847830i −3.79409 6.57155i 3.99521 6.91990i −2.50000 4.33013i −0.371437 + 0.643348i 18.5564 −1.56545 −15.2902 + 26.4834i −0.244747 + 0.423915i
26.6 1.55500 + 2.69333i −1.90691 3.30286i −0.836019 + 1.44803i −2.50000 4.33013i 5.93046 10.2719i 5.61900 19.6799 6.22742 10.7862i 7.77498 13.4667i
26.7 1.74804 + 3.02770i 4.62018 + 8.00239i −2.11129 + 3.65686i −2.50000 4.33013i −16.1525 + 27.9770i −29.1065 13.2062 −29.1921 + 50.5622i 8.74020 15.1385i
26.8 2.59053 + 4.48694i 2.66870 + 4.62232i −9.42174 + 16.3189i −2.50000 4.33013i −13.8267 + 23.9485i 30.6349 −56.1808 −0.743882 + 1.28844i 12.9527 22.4347i
26.9 2.76060 + 4.78150i −3.84550 6.66060i −11.2418 + 19.4714i −2.50000 4.33013i 21.2318 36.7745i −27.3870 −79.9668 −16.0758 + 27.8440i 13.8030 23.9075i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.9
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 95.4.e.b 18
19.c even 3 1 inner 95.4.e.b 18
19.c even 3 1 1805.4.a.n 9
19.d odd 6 1 1805.4.a.o 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.4.e.b 18 1.a even 1 1 trivial
95.4.e.b 18 19.c even 3 1 inner
1805.4.a.n 9 19.c even 3 1
1805.4.a.o 9 19.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{18} - 6 T_{2}^{17} + 79 T_{2}^{16} - 264 T_{2}^{15} + 2840 T_{2}^{14} - 7757 T_{2}^{13} + \cdots + 57600 \) acting on \(S_{4}^{\mathrm{new}}(95, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{18} - 6 T^{17} + \cdots + 57600 \) Copy content Toggle raw display
$3$ \( T^{18} + \cdots + 65004601600 \) Copy content Toggle raw display
$5$ \( (T^{2} + 5 T + 25)^{9} \) Copy content Toggle raw display
$7$ \( (T^{9} + 45 T^{8} + \cdots + 86179484384)^{2} \) Copy content Toggle raw display
$11$ \( (T^{9} + \cdots - 1459864914849)^{2} \) Copy content Toggle raw display
$13$ \( T^{18} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{18} + \cdots + 20\!\cdots\!44 \) Copy content Toggle raw display
$19$ \( T^{18} + \cdots + 33\!\cdots\!39 \) Copy content Toggle raw display
$23$ \( T^{18} + \cdots + 42\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{18} + \cdots + 79\!\cdots\!24 \) Copy content Toggle raw display
$31$ \( (T^{9} + \cdots - 12\!\cdots\!48)^{2} \) Copy content Toggle raw display
$37$ \( (T^{9} + \cdots - 18\!\cdots\!76)^{2} \) Copy content Toggle raw display
$41$ \( T^{18} + \cdots + 49\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( T^{18} + \cdots + 60\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{18} + \cdots + 24\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{18} + \cdots + 14\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{18} + \cdots + 52\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{18} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{18} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{18} + \cdots + 18\!\cdots\!64 \) Copy content Toggle raw display
$73$ \( T^{18} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{18} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( (T^{9} + \cdots + 20\!\cdots\!64)^{2} \) Copy content Toggle raw display
$89$ \( T^{18} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{18} + \cdots + 74\!\cdots\!36 \) Copy content Toggle raw display
show more
show less