Newspace parameters
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.60518145055\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-3}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).
\(n\) | \(21\) | \(77\) |
\(\chi(n)\) | \(-\zeta_{6}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 |
|
0.500000 | − | 0.866025i | 2.50000 | − | 4.33013i | 3.50000 | + | 6.06218i | −2.50000 | + | 4.33013i | −2.50000 | − | 4.33013i | 22.0000 | 15.0000 | 1.00000 | + | 1.73205i | 2.50000 | + | 4.33013i | ||||||||||
26.1 | 0.500000 | + | 0.866025i | 2.50000 | + | 4.33013i | 3.50000 | − | 6.06218i | −2.50000 | − | 4.33013i | −2.50000 | + | 4.33013i | 22.0000 | 15.0000 | 1.00000 | − | 1.73205i | 2.50000 | − | 4.33013i | |||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.4.e.a | ✓ | 2 |
19.c | even | 3 | 1 | inner | 95.4.e.a | ✓ | 2 |
19.c | even | 3 | 1 | 1805.4.a.e | 1 | ||
19.d | odd | 6 | 1 | 1805.4.a.g | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.4.e.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
95.4.e.a | ✓ | 2 | 19.c | even | 3 | 1 | inner |
1805.4.a.e | 1 | 19.c | even | 3 | 1 | ||
1805.4.a.g | 1 | 19.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} - T_{2} + 1 \)
acting on \(S_{4}^{\mathrm{new}}(95, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} - T + 1 \)
$3$
\( T^{2} - 5T + 25 \)
$5$
\( T^{2} + 5T + 25 \)
$7$
\( (T - 22)^{2} \)
$11$
\( (T - 9)^{2} \)
$13$
\( T^{2} + 54T + 2916 \)
$17$
\( T^{2} - 54T + 2916 \)
$19$
\( T^{2} + 133T + 6859 \)
$23$
\( T^{2} - 92T + 8464 \)
$29$
\( T^{2} - 134T + 17956 \)
$31$
\( (T + 252)^{2} \)
$37$
\( (T + 236)^{2} \)
$41$
\( T^{2} - 243T + 59049 \)
$43$
\( T^{2} + 496T + 246016 \)
$47$
\( T^{2} + 502T + 252004 \)
$53$
\( T^{2} + 62T + 3844 \)
$59$
\( T^{2} + 681T + 463761 \)
$61$
\( T^{2} - 142T + 20164 \)
$67$
\( T^{2} + 55T + 3025 \)
$71$
\( T^{2} - 974T + 948676 \)
$73$
\( T^{2} + 695T + 483025 \)
$79$
\( T^{2} - 736T + 541696 \)
$83$
\( (T + 63)^{2} \)
$89$
\( T^{2} + 726T + 527076 \)
$97$
\( T^{2} - 1167 T + 1361889 \)
show more
show less