Properties

Label 95.4.e
Level $95$
Weight $4$
Character orbit 95.e
Rep. character $\chi_{95}(11,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $40$
Newform subspaces $3$
Sturm bound $40$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 95.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 3 \)
Sturm bound: \(40\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(95, [\chi])\).

Total New Old
Modular forms 64 40 24
Cusp forms 56 40 16
Eisenstein series 8 0 8

Trace form

\( 40 q + 4 q^{2} + 2 q^{3} - 86 q^{4} + 26 q^{6} - 40 q^{7} - 96 q^{8} - 210 q^{9} + 50 q^{10} - 72 q^{11} + 48 q^{12} + 48 q^{13} + 84 q^{14} + 60 q^{15} - 302 q^{16} - 264 q^{17} - 400 q^{18} + 464 q^{19}+ \cdots + 3298 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.4.e.a 95.e 19.c $2$ $5.605$ \(\Q(\sqrt{-3}) \) None 95.4.e.a \(1\) \(5\) \(-5\) \(44\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(5-5\zeta_{6})q^{3}+7\zeta_{6}q^{4}+\cdots\)
95.4.e.b 95.e 19.c $18$ $5.605$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 95.4.e.b \(6\) \(2\) \(-45\) \(-90\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{1}+\beta _{4})q^{2}+\beta _{11}q^{3}+(-\beta _{1}+\cdots)q^{4}+\cdots\)
95.4.e.c 95.e 19.c $20$ $5.605$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 95.4.e.c \(-3\) \(-5\) \(50\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+\beta _{3})q^{2}-\beta _{2}q^{3}+(4\beta _{4}+\beta _{5}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(95, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(95, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 2}\)