Properties

Label 95.4.a.c
Level $95$
Weight $4$
Character orbit 95.a
Self dual yes
Analytic conductor $5.605$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [95,4,Mod(1,95)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(95, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("95.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 95.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,3,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.60518145055\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{2} + 7 q^{3} + q^{4} + 5 q^{5} + 21 q^{6} + 11 q^{7} - 21 q^{8} + 22 q^{9} + 15 q^{10} - 36 q^{11} + 7 q^{12} + 65 q^{13} + 33 q^{14} + 35 q^{15} - 71 q^{16} - 87 q^{17} + 66 q^{18} + 19 q^{19}+ \cdots - 792 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
3.00000 7.00000 1.00000 5.00000 21.0000 11.0000 −21.0000 22.0000 15.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 95.4.a.c 1
3.b odd 2 1 855.4.a.c 1
4.b odd 2 1 1520.4.a.a 1
5.b even 2 1 475.4.a.b 1
5.c odd 4 2 475.4.b.d 2
19.b odd 2 1 1805.4.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.4.a.c 1 1.a even 1 1 trivial
475.4.a.b 1 5.b even 2 1
475.4.b.d 2 5.c odd 4 2
855.4.a.c 1 3.b odd 2 1
1520.4.a.a 1 4.b odd 2 1
1805.4.a.c 1 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(95))\):

\( T_{2} - 3 \) Copy content Toggle raw display
\( T_{3} - 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 3 \) Copy content Toggle raw display
$3$ \( T - 7 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T - 11 \) Copy content Toggle raw display
$11$ \( T + 36 \) Copy content Toggle raw display
$13$ \( T - 65 \) Copy content Toggle raw display
$17$ \( T + 87 \) Copy content Toggle raw display
$19$ \( T - 19 \) Copy content Toggle raw display
$23$ \( T + 129 \) Copy content Toggle raw display
$29$ \( T - 231 \) Copy content Toggle raw display
$31$ \( T - 110 \) Copy content Toggle raw display
$37$ \( T + 142 \) Copy content Toggle raw display
$41$ \( T + 330 \) Copy content Toggle raw display
$43$ \( T - 74 \) Copy content Toggle raw display
$47$ \( T + 336 \) Copy content Toggle raw display
$53$ \( T - 501 \) Copy content Toggle raw display
$59$ \( T - 633 \) Copy content Toggle raw display
$61$ \( T + 88 \) Copy content Toggle raw display
$67$ \( T - 119 \) Copy content Toggle raw display
$71$ \( T + 204 \) Copy content Toggle raw display
$73$ \( T - 407 \) Copy content Toggle raw display
$79$ \( T - 1262 \) Copy content Toggle raw display
$83$ \( T - 270 \) Copy content Toggle raw display
$89$ \( T + 30 \) Copy content Toggle raw display
$97$ \( T - 1406 \) Copy content Toggle raw display
show more
show less