Defining parameters
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(95))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 18 | 14 |
Cusp forms | 28 | 18 | 10 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(11\) | \(6\) | \(5\) | \(10\) | \(6\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(5\) | \(2\) | \(3\) | \(4\) | \(2\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(7\) | \(3\) | \(4\) | \(6\) | \(3\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(9\) | \(7\) | \(2\) | \(8\) | \(7\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(20\) | \(13\) | \(7\) | \(18\) | \(13\) | \(5\) | \(2\) | \(0\) | \(2\) | ||||
Minus space | \(-\) | \(12\) | \(5\) | \(7\) | \(10\) | \(5\) | \(5\) | \(2\) | \(0\) | \(2\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(95))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(95))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(95)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 2}\)