Properties

Label 95.4.a
Level $95$
Weight $4$
Character orbit 95.a
Rep. character $\chi_{95}(1,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $7$
Sturm bound $40$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 95.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(40\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(95))\).

Total New Old
Modular forms 32 18 14
Cusp forms 28 18 10
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(11\)\(6\)\(5\)\(10\)\(6\)\(4\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(5\)\(2\)\(3\)\(4\)\(2\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(7\)\(3\)\(4\)\(6\)\(3\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(9\)\(7\)\(2\)\(8\)\(7\)\(1\)\(1\)\(0\)\(1\)
Plus space\(+\)\(20\)\(13\)\(7\)\(18\)\(13\)\(5\)\(2\)\(0\)\(2\)
Minus space\(-\)\(12\)\(5\)\(7\)\(10\)\(5\)\(5\)\(2\)\(0\)\(2\)

Trace form

\( 18 q + 4 q^{2} + 52 q^{4} + 10 q^{5} + 68 q^{6} + 28 q^{7} - 48 q^{8} + 166 q^{9} + 8 q^{11} + 64 q^{12} + 16 q^{13} - 24 q^{14} - 40 q^{15} + 484 q^{16} + 104 q^{17} - 108 q^{18} + 80 q^{20} + 240 q^{21}+ \cdots + 664 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(95))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 19
95.4.a.a 95.a 1.a $1$ $5.605$ \(\Q\) None 95.4.a.a \(0\) \(4\) \(-5\) \(-22\) $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{3}-8q^{4}-5q^{5}-22q^{7}-11q^{9}+\cdots\)
95.4.a.b 95.a 1.a $1$ $5.605$ \(\Q\) None 95.4.a.b \(3\) \(-5\) \(-5\) \(-1\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{2}-5q^{3}+q^{4}-5q^{5}-15q^{6}+\cdots\)
95.4.a.c 95.a 1.a $1$ $5.605$ \(\Q\) None 95.4.a.c \(3\) \(7\) \(5\) \(11\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{2}+7q^{3}+q^{4}+5q^{5}+21q^{6}+\cdots\)
95.4.a.d 95.a 1.a $1$ $5.605$ \(\Q\) None 95.4.a.d \(5\) \(4\) \(5\) \(-32\) $-$ $-$ $\mathrm{SU}(2)$ \(q+5q^{2}+4q^{3}+17q^{4}+5q^{5}+20q^{6}+\cdots\)
95.4.a.e 95.a 1.a $3$ $5.605$ 3.3.1304.1 None 95.4.a.e \(-3\) \(-11\) \(15\) \(-5\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{2}+(-4-\beta _{1}-\beta _{2})q^{3}+\cdots\)
95.4.a.f 95.a 1.a $5$ $5.605$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 95.4.a.f \(-3\) \(-4\) \(25\) \(72\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-\beta _{1}-\beta _{3})q^{3}+(4+\cdots)q^{4}+\cdots\)
95.4.a.g 95.a 1.a $6$ $5.605$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 95.4.a.g \(-1\) \(5\) \(-30\) \(5\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1-\beta _{1}-\beta _{5})q^{3}+(4+\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(95))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(95)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 2}\)