Properties

Label 95.2.k.b
Level $95$
Weight $2$
Character orbit 95.k
Analytic conductor $0.759$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [95,2,Mod(6,95)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(95, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("95.6");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 95.k (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.758578819202\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 12 x^{16} - 8 x^{15} + 96 x^{14} - 75 x^{13} + 448 x^{12} - 405 x^{11} + 1521 x^{10} + \cdots + 361 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{14} q^{2} + ( - \beta_{15} - \beta_{7} + \cdots - \beta_{4}) q^{3}+ \cdots + (\beta_{15} - \beta_{14} - 2 \beta_{12} + \cdots - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{14} q^{2} + ( - \beta_{15} - \beta_{7} + \cdots - \beta_{4}) q^{3}+ \cdots + (\beta_{15} - 3 \beta_{12} + \beta_{10} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 3 q^{2} - 3 q^{3} - 3 q^{4} - 6 q^{6} - 12 q^{8} - 21 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + 3 q^{2} - 3 q^{3} - 3 q^{4} - 6 q^{6} - 12 q^{8} - 21 q^{9} - 3 q^{10} + 6 q^{12} - 3 q^{13} + 24 q^{14} + 3 q^{15} + 21 q^{16} - 24 q^{17} - 12 q^{18} - 12 q^{19} - 12 q^{20} + 3 q^{21} + 15 q^{22} + 21 q^{23} + 21 q^{24} - 21 q^{26} + 6 q^{27} - 24 q^{28} - 9 q^{29} - 12 q^{30} + 30 q^{31} + 45 q^{32} - 3 q^{33} + 24 q^{34} - 6 q^{35} - 21 q^{36} - 60 q^{37} - 15 q^{38} + 12 q^{39} - 6 q^{40} - 6 q^{41} + 39 q^{42} - 6 q^{43} - 30 q^{44} + 6 q^{45} + 21 q^{46} + 33 q^{47} - 63 q^{48} - 3 q^{49} + 27 q^{51} + 9 q^{52} + 24 q^{53} + 30 q^{54} - 3 q^{55} - 72 q^{56} - 30 q^{57} + 36 q^{58} + 18 q^{59} + 15 q^{60} + 6 q^{61} + 12 q^{62} + 24 q^{63} - 24 q^{64} + 3 q^{65} - 33 q^{66} - 24 q^{67} - 3 q^{68} + 27 q^{69} + 39 q^{70} + 24 q^{71} + 18 q^{72} + 6 q^{73} - 39 q^{74} - 6 q^{75} + 27 q^{76} + 24 q^{77} + 72 q^{78} + 9 q^{79} + 33 q^{80} + 15 q^{81} - 57 q^{82} - 12 q^{84} + 24 q^{85} - 33 q^{86} - 45 q^{87} + 39 q^{88} - 6 q^{89} - 21 q^{90} - 6 q^{91} - 66 q^{92} - 72 q^{93} - 66 q^{94} - 15 q^{95} - 18 q^{96} - 87 q^{97} + 39 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{18} + 12 x^{16} - 8 x^{15} + 96 x^{14} - 75 x^{13} + 448 x^{12} - 405 x^{11} + 1521 x^{10} + \cdots + 361 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 136164871502623 \nu^{17} + \cdots - 12\!\cdots\!58 ) / 23\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 305669388244104 \nu^{17} + 493873766181026 \nu^{16} + \cdots + 47\!\cdots\!16 ) / 78\!\cdots\!71 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 13\!\cdots\!19 \nu^{17} + \cdots + 40\!\cdots\!81 ) / 23\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 13\!\cdots\!95 \nu^{17} + \cdots + 49\!\cdots\!59 ) / 23\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 38\!\cdots\!82 \nu^{17} + \cdots + 73\!\cdots\!88 ) / 23\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 13\!\cdots\!56 \nu^{17} + 305669388244104 \nu^{16} + \cdots - 15\!\cdots\!37 ) / 78\!\cdots\!71 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 42\!\cdots\!70 \nu^{17} + \cdots - 79\!\cdots\!20 ) / 23\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 116934812256397 \nu^{17} - 400329673137974 \nu^{16} + \cdots - 19\!\cdots\!38 ) / 63\!\cdots\!49 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 47\!\cdots\!03 \nu^{17} + \cdots + 52\!\cdots\!54 ) / 23\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 61\!\cdots\!77 \nu^{17} + 828266836359098 \nu^{16} + \cdots + 60\!\cdots\!85 ) / 23\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 84\!\cdots\!25 \nu^{17} + \cdots - 58\!\cdots\!05 ) / 23\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 84\!\cdots\!44 \nu^{17} + \cdots - 15\!\cdots\!70 ) / 23\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 87\!\cdots\!64 \nu^{17} + \cdots + 47\!\cdots\!08 ) / 23\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 92\!\cdots\!56 \nu^{17} + \cdots + 30\!\cdots\!25 ) / 23\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 316478299376213 \nu^{17} - 588887179277519 \nu^{16} + \cdots - 38\!\cdots\!43 ) / 63\!\cdots\!49 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 17\!\cdots\!19 \nu^{17} + \cdots - 11\!\cdots\!95 ) / 23\!\cdots\!13 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{16} + 3\beta_{7} + \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{17} - \beta_{12} - 2\beta_{10} + \beta_{9} - \beta_{4} - 3\beta_{3} - 2\beta_{2} - 3\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - \beta_{17} + 6 \beta_{16} + \beta_{14} - \beta_{13} + 2 \beta_{12} + 6 \beta_{11} + 6 \beta_{10} + \cdots - 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 9 \beta_{16} - \beta_{15} - \beta_{14} - \beta_{13} - \beta_{12} - 7 \beta_{11} + 9 \beta_{10} + \cdots + 7 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 3 \beta_{17} - 8 \beta_{16} + 10 \beta_{15} - 9 \beta_{14} + 10 \beta_{13} - 12 \beta_{12} - 33 \beta_{11} + \cdots + 57 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 46 \beta_{17} + 69 \beta_{16} - 10 \beta_{15} + 22 \beta_{14} - 12 \beta_{13} + 77 \beta_{12} + \cdots - 112 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 52 \beta_{17} - 176 \beta_{16} - 63 \beta_{15} - 14 \beta_{14} - 14 \beta_{13} - 76 \beta_{12} + \cdots + 39 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 252 \beta_{17} - 53 \beta_{16} + 181 \beta_{15} - 105 \beta_{14} + 181 \beta_{13} - 417 \beta_{12} + \cdots + 518 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 682 \beta_{17} + 1497 \beta_{16} - 133 \beta_{15} + 550 \beta_{14} - 417 \beta_{13} + 1349 \beta_{12} + \cdots - 2209 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 487 \beta_{17} - 3061 \beta_{16} - 816 \beta_{15} - 533 \beta_{14} - 533 \beta_{13} - 1081 \beta_{12} + \cdots + 1560 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 2804 \beta_{17} - 2093 \beta_{16} + 3829 \beta_{15} - 2748 \beta_{14} + 3829 \beta_{13} - 5996 \beta_{12} + \cdots + 11782 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 13860 \beta_{17} + 24807 \beta_{16} - 3646 \beta_{15} + 9642 \beta_{14} - 5996 \beta_{13} + \cdots - 36433 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 13621 \beta_{17} - 54352 \beta_{16} - 18275 \beta_{15} - 8140 \beta_{14} - 8140 \beta_{13} + \cdots + 20828 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 65420 \beta_{17} - 28968 \beta_{16} + 67593 \beta_{15} - 42795 \beta_{14} + 67593 \beta_{13} + \cdots + 185488 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 239831 \beta_{17} + 463488 \beta_{16} - 58869 \beta_{15} + 181667 \beta_{14} - 122798 \beta_{13} + \cdots - 669036 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 208482 \beta_{17} - 982637 \beta_{16} - 300623 \beta_{15} - 168782 \beta_{14} - 168782 \beta_{13} + \cdots + 436673 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(\beta_{4} + \beta_{8}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
6.1
0.785237 + 1.36007i
0.296923 + 0.514286i
−0.908512 1.57359i
0.785237 1.36007i
0.296923 0.514286i
−0.908512 + 1.57359i
0.731154 1.26640i
−0.359728 + 0.623068i
−1.31112 + 2.27092i
−0.841804 1.45805i
0.597039 + 1.03410i
1.01081 + 1.75077i
0.731154 + 1.26640i
−0.359728 0.623068i
−1.31112 2.27092i
−0.841804 + 1.45805i
0.597039 1.03410i
1.01081 1.75077i
−1.20305 + 1.00948i −2.14722 0.781523i 0.0809872 0.459301i −0.173648 0.984808i 3.37214 1.22736i 2.00668 3.47568i −1.20425 2.08582i 1.70162 + 1.42783i 1.20305 + 1.00948i
6.2 −0.454913 + 0.381717i 1.81364 + 0.660111i −0.286059 + 1.62232i −0.173648 0.984808i −1.07702 + 0.392004i −0.530259 + 0.918436i −1.08298 1.87578i 0.555408 + 0.466042i 0.454913 + 0.381717i
6.3 1.39192 1.16796i −0.166424 0.0605732i 0.226016 1.28180i −0.173648 0.984808i −0.302396 + 0.110063i −0.536732 + 0.929646i 0.634528 + 1.09903i −2.27411 1.90820i −1.39192 1.16796i
16.1 −1.20305 1.00948i −2.14722 + 0.781523i 0.0809872 + 0.459301i −0.173648 + 0.984808i 3.37214 + 1.22736i 2.00668 + 3.47568i −1.20425 + 2.08582i 1.70162 1.42783i 1.20305 1.00948i
16.2 −0.454913 0.381717i 1.81364 0.660111i −0.286059 1.62232i −0.173648 + 0.984808i −1.07702 0.392004i −0.530259 0.918436i −1.08298 + 1.87578i 0.555408 0.466042i 0.454913 0.381717i
16.3 1.39192 + 1.16796i −0.166424 + 0.0605732i 0.226016 + 1.28180i −0.173648 + 0.984808i −0.302396 0.110063i −0.536732 0.929646i 0.634528 1.09903i −2.27411 + 1.90820i −1.39192 + 1.16796i
36.1 −0.253927 + 1.44009i 1.15700 + 0.970838i −0.130002 0.0473169i 0.939693 0.342020i −1.69189 + 1.41966i −2.03586 3.52622i −1.36116 + 2.35759i −0.124823 0.707907i 0.253927 + 1.44009i
36.2 0.124932 0.708527i −0.945515 0.793382i 1.39298 + 0.507004i 0.939693 0.342020i −0.680257 + 0.570804i −0.645970 1.11885i 1.25271 2.16976i −0.256400 1.45411i −0.124932 0.708527i
36.3 0.455347 2.58240i −0.711484 0.597006i −4.58206 1.66773i 0.939693 0.342020i −1.86568 + 1.56549i 1.91579 + 3.31824i −3.77094 + 6.53146i −0.371151 2.10490i −0.455347 2.58240i
61.1 −1.58207 0.575828i −0.564707 3.20261i 0.639290 + 0.536428i −0.766044 + 0.642788i −0.950745 + 5.39194i 0.274194 0.474919i 0.981094 + 1.69930i −7.11876 + 2.59101i 1.58207 0.575828i
61.2 1.12207 + 0.408399i 0.394733 + 2.23864i −0.439845 0.369074i −0.766044 + 0.642788i −0.471342 + 2.67312i 1.09825 1.90222i −1.53688 2.66196i −2.03663 + 0.741274i −1.12207 + 0.408399i
61.3 1.89970 + 0.691434i −0.330026 1.87167i 1.59869 + 1.34146i −0.766044 + 0.642788i 0.667187 3.78381i −1.54609 + 2.67790i 0.0878797 + 0.152212i −0.575162 + 0.209342i −1.89970 + 0.691434i
66.1 −0.253927 1.44009i 1.15700 0.970838i −0.130002 + 0.0473169i 0.939693 + 0.342020i −1.69189 1.41966i −2.03586 + 3.52622i −1.36116 2.35759i −0.124823 + 0.707907i 0.253927 1.44009i
66.2 0.124932 + 0.708527i −0.945515 + 0.793382i 1.39298 0.507004i 0.939693 + 0.342020i −0.680257 0.570804i −0.645970 + 1.11885i 1.25271 + 2.16976i −0.256400 + 1.45411i −0.124932 + 0.708527i
66.3 0.455347 + 2.58240i −0.711484 + 0.597006i −4.58206 + 1.66773i 0.939693 + 0.342020i −1.86568 1.56549i 1.91579 3.31824i −3.77094 6.53146i −0.371151 + 2.10490i −0.455347 + 2.58240i
81.1 −1.58207 + 0.575828i −0.564707 + 3.20261i 0.639290 0.536428i −0.766044 0.642788i −0.950745 5.39194i 0.274194 + 0.474919i 0.981094 1.69930i −7.11876 2.59101i 1.58207 + 0.575828i
81.2 1.12207 0.408399i 0.394733 2.23864i −0.439845 + 0.369074i −0.766044 0.642788i −0.471342 2.67312i 1.09825 + 1.90222i −1.53688 + 2.66196i −2.03663 0.741274i −1.12207 0.408399i
81.3 1.89970 0.691434i −0.330026 + 1.87167i 1.59869 1.34146i −0.766044 0.642788i 0.667187 + 3.78381i −1.54609 2.67790i 0.0878797 0.152212i −0.575162 0.209342i −1.89970 0.691434i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 6.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 95.2.k.b 18
3.b odd 2 1 855.2.bs.b 18
5.b even 2 1 475.2.l.b 18
5.c odd 4 2 475.2.u.c 36
19.e even 9 1 inner 95.2.k.b 18
19.e even 9 1 1805.2.a.t 9
19.f odd 18 1 1805.2.a.u 9
57.l odd 18 1 855.2.bs.b 18
95.o odd 18 1 9025.2.a.cd 9
95.p even 18 1 475.2.l.b 18
95.p even 18 1 9025.2.a.ce 9
95.q odd 36 2 475.2.u.c 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.k.b 18 1.a even 1 1 trivial
95.2.k.b 18 19.e even 9 1 inner
475.2.l.b 18 5.b even 2 1
475.2.l.b 18 95.p even 18 1
475.2.u.c 36 5.c odd 4 2
475.2.u.c 36 95.q odd 36 2
855.2.bs.b 18 3.b odd 2 1
855.2.bs.b 18 57.l odd 18 1
1805.2.a.t 9 19.e even 9 1
1805.2.a.u 9 19.f odd 18 1
9025.2.a.cd 9 95.o odd 18 1
9025.2.a.ce 9 95.p even 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{18} - 3 T_{2}^{17} + 6 T_{2}^{16} - 5 T_{2}^{15} - 15 T_{2}^{14} + 24 T_{2}^{13} + 70 T_{2}^{12} + \cdots + 361 \) acting on \(S_{2}^{\mathrm{new}}(95, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{18} - 3 T^{17} + \cdots + 361 \) Copy content Toggle raw display
$3$ \( T^{18} + 3 T^{17} + \cdots + 361 \) Copy content Toggle raw display
$5$ \( (T^{6} - T^{3} + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{18} + 33 T^{16} + \cdots + 117649 \) Copy content Toggle raw display
$11$ \( T^{18} + 36 T^{16} + \cdots + 361 \) Copy content Toggle raw display
$13$ \( T^{18} + 3 T^{17} + \cdots + 98743969 \) Copy content Toggle raw display
$17$ \( T^{18} + 24 T^{17} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{18} + \cdots + 322687697779 \) Copy content Toggle raw display
$23$ \( T^{18} + \cdots + 3993860809 \) Copy content Toggle raw display
$29$ \( T^{18} + \cdots + 492805404001 \) Copy content Toggle raw display
$31$ \( T^{18} + \cdots + 993257404129 \) Copy content Toggle raw display
$37$ \( (T^{9} + 30 T^{8} + \cdots + 27721)^{2} \) Copy content Toggle raw display
$41$ \( T^{18} + \cdots + 132479256529 \) Copy content Toggle raw display
$43$ \( T^{18} + \cdots + 101989801 \) Copy content Toggle raw display
$47$ \( T^{18} + \cdots + 32737816559809 \) Copy content Toggle raw display
$53$ \( T^{18} + \cdots + 19250147475001 \) Copy content Toggle raw display
$59$ \( T^{18} + \cdots + 333749999521 \) Copy content Toggle raw display
$61$ \( T^{18} + \cdots + 3468418292161 \) Copy content Toggle raw display
$67$ \( T^{18} + \cdots + 36\!\cdots\!81 \) Copy content Toggle raw display
$71$ \( T^{18} + \cdots + 8590138489 \) Copy content Toggle raw display
$73$ \( T^{18} + \cdots + 1047660743809 \) Copy content Toggle raw display
$79$ \( T^{18} + \cdots + 316957384070209 \) Copy content Toggle raw display
$83$ \( T^{18} + 171 T^{16} + \cdots + 96609241 \) Copy content Toggle raw display
$89$ \( T^{18} + \cdots + 143304841 \) Copy content Toggle raw display
$97$ \( T^{18} + \cdots + 36\!\cdots\!09 \) Copy content Toggle raw display
show more
show less