Properties

Label 95.2.i.b
Level $95$
Weight $2$
Character orbit 95.i
Analytic conductor $0.759$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [95,2,Mod(49,95)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(95, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("95.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 95.i (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.758578819202\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.13026266817859584.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6x^{10} + 29x^{8} - 40x^{6} + 43x^{4} - 7x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{2} + ( - \beta_{5} + \beta_{4}) q^{3} + ( - \beta_{9} - \beta_{8} + \cdots - \beta_{2}) q^{4} + ( - \beta_{9} + \beta_1) q^{5} + (\beta_{8} - 2 \beta_{6} + \beta_{2}) q^{6} + (2 \beta_{11} + \beta_{7} + \cdots + 2 \beta_1) q^{7}+ \cdots + ( - 3 \beta_{9} + \beta_{8} + \cdots + \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{4} - 2 q^{5} - 12 q^{6} + 8 q^{9} + 6 q^{10} + 4 q^{11} + 22 q^{14} - 4 q^{15} - 14 q^{16} - 12 q^{19} - 40 q^{20} - 20 q^{21} + 2 q^{24} - 6 q^{25} - 44 q^{26} - 12 q^{29} + 12 q^{30} + 60 q^{31}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 6x^{10} + 29x^{8} - 40x^{6} + 43x^{4} - 7x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -36\nu^{10} + 174\nu^{8} - 841\nu^{6} + 258\nu^{4} - 42\nu^{2} - 2207 ) / 1205 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 138\nu^{10} - 667\nu^{8} + 3023\nu^{6} - 989\nu^{4} + 161\nu^{2} + 2636 ) / 1205 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 138\nu^{11} - 667\nu^{9} + 3023\nu^{7} - 989\nu^{5} + 161\nu^{3} + 2636\nu ) / 1205 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 174\nu^{11} - 841\nu^{9} + 3864\nu^{7} - 1247\nu^{5} + 203\nu^{3} + 7253\nu ) / 1205 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 203\nu^{10} - 1182\nu^{8} + 5713\nu^{6} - 7279\nu^{4} + 8471\nu^{2} - 174 ) / 1205 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -203\nu^{11} + 1182\nu^{9} - 5713\nu^{7} + 7279\nu^{5} - 8471\nu^{3} + 174\nu ) / 1205 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -74\nu^{10} + 438\nu^{8} - 2117\nu^{6} + 2860\nu^{4} - 3139\nu^{2} + 511 ) / 241 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -429\nu^{10} + 2676\nu^{8} - 12934\nu^{6} + 19342\nu^{4} - 19178\nu^{2} + 3122 ) / 1205 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -429\nu^{11} + 2676\nu^{9} - 12934\nu^{7} + 19342\nu^{5} - 19178\nu^{3} + 3122\nu ) / 1205 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -1002\nu^{11} + 6048\nu^{9} - 29232\nu^{7} + 40921\nu^{5} - 43344\nu^{3} + 7056\nu ) / 1205 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{8} + 2\beta_{6} + \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{11} - \beta_{10} - 3\beta_{7} - \beta_{5} + \beta_{4} + \beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{9} + 5\beta_{8} + 7\beta_{6} - 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 5\beta_{11} - 6\beta_{10} - 12\beta_{7} - 12\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -6\beta_{3} - 23\beta_{2} - 29 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 23\beta_{5} - 29\beta_{4} - 75\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 29\beta_{9} - 104\beta_{8} - 127\beta_{6} - 29\beta_{3} - 104\beta_{2} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -104\beta_{11} + 133\beta_{10} + 231\beta_{7} + 104\beta_{5} - 133\beta_{4} - 104\beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 133\beta_{9} - 468\beta_{8} - 566\beta_{6} + 566 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( -468\beta_{11} + 601\beta_{10} + 1034\beta_{7} + 1034\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(-\beta_{6}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
−0.352587 0.203566i
−1.00376 0.579521i
−1.83525 1.05958i
1.83525 + 1.05958i
1.00376 + 0.579521i
0.352587 + 0.203566i
−0.352587 + 0.203566i
−1.00376 + 0.579521i
−1.83525 + 1.05958i
1.83525 1.05958i
1.00376 0.579521i
0.352587 0.203566i
−2.12713 1.22810i 1.35190 + 0.780522i 2.01647 + 3.49262i −1.45193 + 1.70056i −1.91712 3.32055i 4.50527i 4.99330i −0.281570 0.487693i 5.17691 1.83419i
49.2 −0.747190 0.431391i 2.66661 + 1.53957i −0.627804 1.08739i −0.0476457 2.23556i −1.32831 2.30070i 0.566520i 2.80888i 3.24054 + 5.61278i −0.928799 + 1.69094i
49.3 −0.408663 0.235942i −0.900858 0.520111i −0.888663 1.53921i −2.19202 0.441641i 0.245432 + 0.425100i 1.17540i 1.78246i −0.958970 1.66098i 0.791597 + 0.697672i
49.4 0.408663 + 0.235942i 0.900858 + 0.520111i −0.888663 1.53921i 1.47848 + 1.67752i 0.245432 + 0.425100i 1.17540i 1.78246i −0.958970 1.66098i 0.208403 + 1.03438i
49.5 0.747190 + 0.431391i −2.66661 1.53957i −0.627804 1.08739i 1.95987 1.07652i −1.32831 2.30070i 0.566520i 2.80888i 3.24054 + 5.61278i 1.92880 + 0.0411078i
49.6 2.12713 + 1.22810i −1.35190 0.780522i 2.01647 + 3.49262i −0.746759 + 2.10769i −1.91712 3.32055i 4.50527i 4.99330i −0.281570 0.487693i −4.17691 + 3.56624i
64.1 −2.12713 + 1.22810i 1.35190 0.780522i 2.01647 3.49262i −1.45193 1.70056i −1.91712 + 3.32055i 4.50527i 4.99330i −0.281570 + 0.487693i 5.17691 + 1.83419i
64.2 −0.747190 + 0.431391i 2.66661 1.53957i −0.627804 + 1.08739i −0.0476457 + 2.23556i −1.32831 + 2.30070i 0.566520i 2.80888i 3.24054 5.61278i −0.928799 1.69094i
64.3 −0.408663 + 0.235942i −0.900858 + 0.520111i −0.888663 + 1.53921i −2.19202 + 0.441641i 0.245432 0.425100i 1.17540i 1.78246i −0.958970 + 1.66098i 0.791597 0.697672i
64.4 0.408663 0.235942i 0.900858 0.520111i −0.888663 + 1.53921i 1.47848 1.67752i 0.245432 0.425100i 1.17540i 1.78246i −0.958970 + 1.66098i 0.208403 1.03438i
64.5 0.747190 0.431391i −2.66661 + 1.53957i −0.627804 + 1.08739i 1.95987 + 1.07652i −1.32831 + 2.30070i 0.566520i 2.80888i 3.24054 5.61278i 1.92880 0.0411078i
64.6 2.12713 1.22810i −1.35190 + 0.780522i 2.01647 3.49262i −0.746759 2.10769i −1.91712 + 3.32055i 4.50527i 4.99330i −0.281570 + 0.487693i −4.17691 3.56624i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
19.c even 3 1 inner
95.i even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 95.2.i.b 12
3.b odd 2 1 855.2.be.d 12
5.b even 2 1 inner 95.2.i.b 12
5.c odd 4 2 475.2.e.g 12
15.d odd 2 1 855.2.be.d 12
19.c even 3 1 inner 95.2.i.b 12
19.c even 3 1 1805.2.b.f 6
19.d odd 6 1 1805.2.b.g 6
57.h odd 6 1 855.2.be.d 12
95.h odd 6 1 1805.2.b.g 6
95.i even 6 1 inner 95.2.i.b 12
95.i even 6 1 1805.2.b.f 6
95.l even 12 2 9025.2.a.bt 6
95.m odd 12 2 475.2.e.g 12
95.m odd 12 2 9025.2.a.bu 6
285.n odd 6 1 855.2.be.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.i.b 12 1.a even 1 1 trivial
95.2.i.b 12 5.b even 2 1 inner
95.2.i.b 12 19.c even 3 1 inner
95.2.i.b 12 95.i even 6 1 inner
475.2.e.g 12 5.c odd 4 2
475.2.e.g 12 95.m odd 12 2
855.2.be.d 12 3.b odd 2 1
855.2.be.d 12 15.d odd 2 1
855.2.be.d 12 57.h odd 6 1
855.2.be.d 12 285.n odd 6 1
1805.2.b.f 6 19.c even 3 1
1805.2.b.f 6 95.i even 6 1
1805.2.b.g 6 19.d odd 6 1
1805.2.b.g 6 95.h odd 6 1
9025.2.a.bt 6 95.l even 12 2
9025.2.a.bu 6 95.m odd 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{12} - 7T_{2}^{10} + 43T_{2}^{8} - 40T_{2}^{6} + 29T_{2}^{4} - 6T_{2}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(95, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} - 7 T^{10} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{12} - 13 T^{10} + \cdots + 625 \) Copy content Toggle raw display
$5$ \( T^{12} + 2 T^{11} + \cdots + 15625 \) Copy content Toggle raw display
$7$ \( (T^{6} + 22 T^{4} + 35 T^{2} + 9)^{2} \) Copy content Toggle raw display
$11$ \( (T^{3} - T^{2} - 4 T + 3)^{4} \) Copy content Toggle raw display
$13$ \( T^{12} - 31 T^{10} + \cdots + 81 \) Copy content Toggle raw display
$17$ \( T^{12} - 35 T^{10} + \cdots + 6561 \) Copy content Toggle raw display
$19$ \( (T^{6} + 6 T^{5} + \cdots + 6859)^{2} \) Copy content Toggle raw display
$23$ \( T^{12} - 12 T^{10} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( (T^{6} + 6 T^{5} + \cdots + 729)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} - 15 T^{2} + \cdots - 97)^{4} \) Copy content Toggle raw display
$37$ \( (T^{6} + 98 T^{4} + \cdots + 729)^{2} \) Copy content Toggle raw display
$41$ \( (T^{6} + 6 T^{5} + 77 T^{4} + \cdots + 9)^{2} \) Copy content Toggle raw display
$43$ \( T^{12} - 127 T^{10} + \cdots + 194481 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 47562811921 \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 131079601 \) Copy content Toggle raw display
$59$ \( (T^{6} - 10 T^{5} + \cdots + 84681)^{2} \) Copy content Toggle raw display
$61$ \( (T^{6} - T^{5} + \cdots + 12769)^{2} \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 207360000 \) Copy content Toggle raw display
$71$ \( (T^{6} - T^{5} + \cdots + 227529)^{2} \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 9845600625 \) Copy content Toggle raw display
$79$ \( (T^{6} - 12 T^{5} + \cdots + 200704)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} + 459 T^{4} + \cdots + 966289)^{2} \) Copy content Toggle raw display
$89$ \( (T^{6} - 18 T^{5} + \cdots + 5184)^{2} \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 1534548635361 \) Copy content Toggle raw display
show more
show less