Newspace parameters
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.758578819202\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{3})\) |
Coefficient field: | 8.0.4601315889.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - x^{7} + 6x^{6} - 3x^{5} + 26x^{4} - 14x^{3} + 31x^{2} + 12x + 9 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - x^{7} + 6x^{6} - 3x^{5} + 26x^{4} - 14x^{3} + 31x^{2} + 12x + 9 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( -26\nu^{7} - 189\nu^{6} + 729\nu^{5} - 911\nu^{4} + 3051\nu^{3} - 3618\nu^{2} + 14317\nu - 1215 ) / 4243 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 115\nu^{7} + 20\nu^{6} + 529\nu^{5} + 276\nu^{4} + 3314\nu^{3} + 989\nu^{2} + 483\nu + 1947 ) / 4243 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -135\nu^{7} + 161\nu^{6} - 621\nu^{5} - 324\nu^{4} - 2599\nu^{3} - 1161\nu^{2} - 567\nu - 11694 ) / 4243 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -649\nu^{7} + 994\nu^{6} - 3834\nu^{5} + 3534\nu^{4} - 16046\nu^{3} + 19028\nu^{2} - 17152\nu + 6390 ) / 12729 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 434\nu^{7} - 109\nu^{6} + 2845\nu^{5} + 193\nu^{4} + 12064\nu^{3} + 338\nu^{2} + 16249\nu + 6573 ) / 4243 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 514\nu^{7} - 833\nu^{6} + 3213\nu^{5} - 3858\nu^{4} + 13447\nu^{3} - 15946\nu^{2} + 16585\nu - 5355 ) / 4243 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{7} + 3\beta_{5} - \beta_{4} - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{6} + 4\beta_{3} + \beta_{2} \)
|
\(\nu^{4}\) | \(=\) |
\( -5\beta_{7} - 12\beta_{5} + \beta_{2} \)
|
\(\nu^{5}\) | \(=\) |
\( -\beta_{7} + 6\beta_{6} + \beta_{4} - 17\beta_{3} - 17\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( 7\beta_{6} + 23\beta_{4} - \beta_{3} - 7\beta_{2} + 51 \)
|
\(\nu^{7}\) | \(=\) |
\( 8\beta_{7} + 3\beta_{5} - 30\beta_{2} + 74\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).
\(n\) | \(21\) | \(77\) |
\(\chi(n)\) | \(-1 + \beta_{5}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 |
|
−1.37901 | + | 2.38851i | −0.745959 | + | 1.29204i | −2.80333 | − | 4.85550i | −0.500000 | + | 0.866025i | −2.05737 | − | 3.56347i | −2.84864 | 9.94721 | 0.387090 | + | 0.670459i | −1.37901 | − | 2.38851i | ||||||||||||||||||||||||||||
11.2 | −0.548719 | + | 0.950409i | 0.189667 | − | 0.328513i | 0.397815 | + | 0.689035i | −0.500000 | + | 0.866025i | 0.208148 | + | 0.360522i | 1.89307 | −3.06803 | 1.42805 | + | 2.47346i | −0.548719 | − | 0.950409i | |||||||||||||||||||||||||||||
11.3 | 0.595455 | − | 1.03136i | −1.52359 | + | 2.63893i | 0.290867 | + | 0.503797i | −0.500000 | + | 0.866025i | 1.81445 | + | 3.14272i | −0.609175 | 3.07461 | −3.14263 | − | 5.44319i | 0.595455 | + | 1.03136i | |||||||||||||||||||||||||||||
11.4 | 0.832272 | − | 1.44154i | 0.579878 | − | 1.00438i | −0.385355 | − | 0.667454i | −0.500000 | + | 0.866025i | −0.965233 | − | 1.67183i | −2.43525 | 2.04621 | 0.827483 | + | 1.43324i | 0.832272 | + | 1.44154i | |||||||||||||||||||||||||||||
26.1 | −1.37901 | − | 2.38851i | −0.745959 | − | 1.29204i | −2.80333 | + | 4.85550i | −0.500000 | − | 0.866025i | −2.05737 | + | 3.56347i | −2.84864 | 9.94721 | 0.387090 | − | 0.670459i | −1.37901 | + | 2.38851i | |||||||||||||||||||||||||||||
26.2 | −0.548719 | − | 0.950409i | 0.189667 | + | 0.328513i | 0.397815 | − | 0.689035i | −0.500000 | − | 0.866025i | 0.208148 | − | 0.360522i | 1.89307 | −3.06803 | 1.42805 | − | 2.47346i | −0.548719 | + | 0.950409i | |||||||||||||||||||||||||||||
26.3 | 0.595455 | + | 1.03136i | −1.52359 | − | 2.63893i | 0.290867 | − | 0.503797i | −0.500000 | − | 0.866025i | 1.81445 | − | 3.14272i | −0.609175 | 3.07461 | −3.14263 | + | 5.44319i | 0.595455 | − | 1.03136i | |||||||||||||||||||||||||||||
26.4 | 0.832272 | + | 1.44154i | 0.579878 | + | 1.00438i | −0.385355 | + | 0.667454i | −0.500000 | − | 0.866025i | −0.965233 | + | 1.67183i | −2.43525 | 2.04621 | 0.827483 | − | 1.43324i | 0.832272 | − | 1.44154i | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.2.e.c | ✓ | 8 |
3.b | odd | 2 | 1 | 855.2.k.h | 8 | ||
4.b | odd | 2 | 1 | 1520.2.q.o | 8 | ||
5.b | even | 2 | 1 | 475.2.e.e | 8 | ||
5.c | odd | 4 | 2 | 475.2.j.c | 16 | ||
19.c | even | 3 | 1 | inner | 95.2.e.c | ✓ | 8 |
19.c | even | 3 | 1 | 1805.2.a.o | 4 | ||
19.d | odd | 6 | 1 | 1805.2.a.i | 4 | ||
57.h | odd | 6 | 1 | 855.2.k.h | 8 | ||
76.g | odd | 6 | 1 | 1520.2.q.o | 8 | ||
95.h | odd | 6 | 1 | 9025.2.a.bp | 4 | ||
95.i | even | 6 | 1 | 475.2.e.e | 8 | ||
95.i | even | 6 | 1 | 9025.2.a.bg | 4 | ||
95.m | odd | 12 | 2 | 475.2.j.c | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.2.e.c | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
95.2.e.c | ✓ | 8 | 19.c | even | 3 | 1 | inner |
475.2.e.e | 8 | 5.b | even | 2 | 1 | ||
475.2.e.e | 8 | 95.i | even | 6 | 1 | ||
475.2.j.c | 16 | 5.c | odd | 4 | 2 | ||
475.2.j.c | 16 | 95.m | odd | 12 | 2 | ||
855.2.k.h | 8 | 3.b | odd | 2 | 1 | ||
855.2.k.h | 8 | 57.h | odd | 6 | 1 | ||
1520.2.q.o | 8 | 4.b | odd | 2 | 1 | ||
1520.2.q.o | 8 | 76.g | odd | 6 | 1 | ||
1805.2.a.i | 4 | 19.d | odd | 6 | 1 | ||
1805.2.a.o | 4 | 19.c | even | 3 | 1 | ||
9025.2.a.bg | 4 | 95.i | even | 6 | 1 | ||
9025.2.a.bp | 4 | 95.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + T_{2}^{7} + 7T_{2}^{6} - 4T_{2}^{5} + 31T_{2}^{4} - 6T_{2}^{3} + 37T_{2}^{2} - 6T_{2} + 36 \)
acting on \(S_{2}^{\mathrm{new}}(95, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + T^{7} + 7 T^{6} - 4 T^{5} + \cdots + 36 \)
$3$
\( T^{8} + 3 T^{7} + 11 T^{6} + 4 T^{5} + \cdots + 4 \)
$5$
\( (T^{2} + T + 1)^{4} \)
$7$
\( (T^{4} + 4 T^{3} - T^{2} - 15 T - 8)^{2} \)
$11$
\( (T^{4} + 2 T^{3} - 25 T^{2} - 19 T + 3)^{2} \)
$13$
\( T^{8} + 7 T^{7} + 42 T^{6} + 95 T^{5} + \cdots + 256 \)
$17$
\( T^{8} - T^{7} + 31 T^{6} + 64 T^{5} + \cdots + 11664 \)
$19$
\( T^{8} - 5 T^{7} + 31 T^{6} + \cdots + 130321 \)
$23$
\( T^{8} + 2 T^{7} + 21 T^{6} - 48 T^{5} + \cdots + 36 \)
$29$
\( T^{8} - T^{7} + 64 T^{6} + 451 T^{5} + \cdots + 19881 \)
$31$
\( (T^{4} - 67 T^{2} - 5 T + 1063)^{2} \)
$37$
\( (T^{4} + 2 T^{3} - 31 T^{2} - 123 T - 118)^{2} \)
$41$
\( T^{8} - 8 T^{7} + 151 T^{6} + \cdots + 5008644 \)
$43$
\( T^{8} + T^{7} + 99 T^{6} + \cdots + 630436 \)
$47$
\( T^{8} - 12 T^{7} + 199 T^{6} + \cdots + 5363856 \)
$53$
\( T^{8} - 5 T^{7} + 111 T^{6} + \cdots + 2916 \)
$59$
\( T^{8} - 5 T^{7} + 150 T^{6} + \cdots + 3515625 \)
$61$
\( T^{8} + 130 T^{6} + 176 T^{5} + \cdots + 9296401 \)
$67$
\( T^{8} + 4 T^{7} + 52 T^{6} + \cdots + 4096 \)
$71$
\( T^{8} + 20 T^{7} + 309 T^{6} + \cdots + 59049 \)
$73$
\( T^{8} - 20 T^{7} + 305 T^{6} + \cdots + 2979076 \)
$79$
\( T^{8} + 17 T^{7} + 217 T^{6} + \cdots + 33856 \)
$83$
\( (T^{4} - T^{3} - 62 T^{2} + 55 T + 366)^{2} \)
$89$
\( T^{8} + 11 T^{7} + 211 T^{6} + \cdots + 14561856 \)
$97$
\( T^{8} + T^{7} + 267 T^{6} + \cdots + 55383364 \)
show more
show less