Newspace parameters
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.758578819202\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{3})\) |
Coefficient field: | 6.0.3518667.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( -\nu^{5} + 7\nu^{4} - 49\nu^{3} + 43\nu^{2} - 42\nu + 294 ) / 259 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -6\nu^{5} + 5\nu^{4} - 35\nu^{3} - \nu^{2} - 215\nu - 49 ) / 259 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -5\nu^{5} + 35\nu^{4} + 14\nu^{3} + 215\nu^{2} - 210\nu + 952 ) / 259 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 18\nu^{5} + 22\nu^{4} + 105\nu^{3} + 3\nu^{2} + 608\nu + 147 ) / 259 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( -\beta_{5} + \beta_{4} - 4\beta_{3} + \beta_{2} - 5 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{4} - 5\beta_{2} + 2 \)
|
\(\nu^{4}\) | \(=\) |
\( 7\beta_{5} + 21\beta_{3} + \beta_1 \)
|
\(\nu^{5}\) | \(=\) |
\( 6\beta_{5} - 6\beta_{4} - 25\beta_{3} + 29\beta_{2} - 35\beta _1 - 19 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).
\(n\) | \(21\) | \(77\) |
\(\chi(n)\) | \(-1 - \beta_{3}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 |
|
−1.14257 | + | 1.97899i | 1.25351 | − | 2.17114i | −1.61094 | − | 2.79023i | 0.500000 | − | 0.866025i | 2.86445 | + | 4.96137i | 3.50702 | 2.79216 | −1.64257 | − | 2.84502i | 1.14257 | + | 1.97899i | ||||||||||||||||||||||
11.2 | −0.610938 | + | 1.05818i | −1.14257 | + | 1.97899i | 0.253509 | + | 0.439091i | 0.500000 | − | 0.866025i | −1.39608 | − | 2.41808i | −1.28514 | −3.06327 | −1.11094 | − | 1.92420i | 0.610938 | + | 1.05818i | |||||||||||||||||||||||
11.3 | 1.25351 | − | 2.17114i | −0.610938 | + | 1.05818i | −2.14257 | − | 3.71104i | 0.500000 | − | 0.866025i | 1.53163 | + | 2.65287i | −0.221876 | −5.72889 | 0.753509 | + | 1.30512i | −1.25351 | − | 2.17114i | |||||||||||||||||||||||
26.1 | −1.14257 | − | 1.97899i | 1.25351 | + | 2.17114i | −1.61094 | + | 2.79023i | 0.500000 | + | 0.866025i | 2.86445 | − | 4.96137i | 3.50702 | 2.79216 | −1.64257 | + | 2.84502i | 1.14257 | − | 1.97899i | |||||||||||||||||||||||
26.2 | −0.610938 | − | 1.05818i | −1.14257 | − | 1.97899i | 0.253509 | − | 0.439091i | 0.500000 | + | 0.866025i | −1.39608 | + | 2.41808i | −1.28514 | −3.06327 | −1.11094 | + | 1.92420i | 0.610938 | − | 1.05818i | |||||||||||||||||||||||
26.3 | 1.25351 | + | 2.17114i | −0.610938 | − | 1.05818i | −2.14257 | + | 3.71104i | 0.500000 | + | 0.866025i | 1.53163 | − | 2.65287i | −0.221876 | −5.72889 | 0.753509 | − | 1.30512i | −1.25351 | + | 2.17114i | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.2.e.b | ✓ | 6 |
3.b | odd | 2 | 1 | 855.2.k.g | 6 | ||
4.b | odd | 2 | 1 | 1520.2.q.j | 6 | ||
5.b | even | 2 | 1 | 475.2.e.d | 6 | ||
5.c | odd | 4 | 2 | 475.2.j.b | 12 | ||
19.c | even | 3 | 1 | inner | 95.2.e.b | ✓ | 6 |
19.c | even | 3 | 1 | 1805.2.a.h | 3 | ||
19.d | odd | 6 | 1 | 1805.2.a.g | 3 | ||
57.h | odd | 6 | 1 | 855.2.k.g | 6 | ||
76.g | odd | 6 | 1 | 1520.2.q.j | 6 | ||
95.h | odd | 6 | 1 | 9025.2.a.ba | 3 | ||
95.i | even | 6 | 1 | 475.2.e.d | 6 | ||
95.i | even | 6 | 1 | 9025.2.a.z | 3 | ||
95.m | odd | 12 | 2 | 475.2.j.b | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.2.e.b | ✓ | 6 | 1.a | even | 1 | 1 | trivial |
95.2.e.b | ✓ | 6 | 19.c | even | 3 | 1 | inner |
475.2.e.d | 6 | 5.b | even | 2 | 1 | ||
475.2.e.d | 6 | 95.i | even | 6 | 1 | ||
475.2.j.b | 12 | 5.c | odd | 4 | 2 | ||
475.2.j.b | 12 | 95.m | odd | 12 | 2 | ||
855.2.k.g | 6 | 3.b | odd | 2 | 1 | ||
855.2.k.g | 6 | 57.h | odd | 6 | 1 | ||
1520.2.q.j | 6 | 4.b | odd | 2 | 1 | ||
1520.2.q.j | 6 | 76.g | odd | 6 | 1 | ||
1805.2.a.g | 3 | 19.d | odd | 6 | 1 | ||
1805.2.a.h | 3 | 19.c | even | 3 | 1 | ||
9025.2.a.z | 3 | 95.i | even | 6 | 1 | ||
9025.2.a.ba | 3 | 95.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} + T_{2}^{5} + 7T_{2}^{4} + 8T_{2}^{3} + 43T_{2}^{2} + 42T_{2} + 49 \)
acting on \(S_{2}^{\mathrm{new}}(95, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} + T^{5} + 7 T^{4} + 8 T^{3} + \cdots + 49 \)
$3$
\( T^{6} + T^{5} + 7 T^{4} + 8 T^{3} + \cdots + 49 \)
$5$
\( (T^{2} - T + 1)^{3} \)
$7$
\( (T^{3} - 2 T^{2} - 5 T - 1)^{2} \)
$11$
\( (T^{3} + 5 T^{2} + 2 T - 1)^{2} \)
$13$
\( (T^{2} - 5 T + 25)^{3} \)
$17$
\( T^{6} + T^{5} + 45 T^{4} - 30 T^{3} + \cdots + 49 \)
$19$
\( T^{6} + 133T^{3} + 6859 \)
$23$
\( T^{6} + 4 T^{5} + 55 T^{4} + \cdots + 2401 \)
$29$
\( T^{6} - 2 T^{5} + 9 T^{4} + 12 T^{3} + \cdots + 1 \)
$31$
\( (T^{3} + T^{2} - 6 T - 7)^{2} \)
$37$
\( (T^{3} + 2 T^{2} - 119 T - 227)^{2} \)
$41$
\( T^{6} - 2 T^{5} + 47 T^{4} + \cdots + 1369 \)
$43$
\( T^{6} - T^{5} + 45 T^{4} - 198 T^{3} + \cdots + 14641 \)
$47$
\( T^{6} + 6 T^{5} + 43 T^{4} + \cdots + 2401 \)
$53$
\( T^{6} + 11 T^{5} + 163 T^{4} + \cdots + 96721 \)
$59$
\( T^{6} + 6 T^{5} + 43 T^{4} + \cdots + 2401 \)
$61$
\( T^{6} - 9 T^{5} + 130 T^{4} + \cdots + 2401 \)
$67$
\( T^{6} - 20 T^{5} + 292 T^{4} + \cdots + 7744 \)
$71$
\( T^{6} - 29 T^{5} + 605 T^{4} + \cdots + 218089 \)
$73$
\( T^{6} - 22 T^{5} + 367 T^{4} + \cdots + 5929 \)
$79$
\( T^{6} - 24 T^{5} + 460 T^{4} + \cdots + 61504 \)
$83$
\( (T^{3} + 3 T^{2} - 54 T + 77)^{2} \)
$89$
\( T^{6} - 14 T^{5} + 232 T^{4} + \cdots + 3136 \)
$97$
\( T^{6} + 7 T^{5} + 115 T^{4} + \cdots + 14641 \)
show more
show less