Defining parameters
| Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 95.e (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(20\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(95, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 24 | 16 | 8 |
| Cusp forms | 16 | 16 | 0 |
| Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(95, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 95.2.e.a | $2$ | $0.759$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(2\) | \(1\) | \(-8\) | \(q+(2-2\zeta_{6})q^{3}+2\zeta_{6}q^{4}+(1-\zeta_{6})q^{5}+\cdots\) |
| 95.2.e.b | $6$ | $0.759$ | 6.0.3518667.1 | None | \(-1\) | \(-1\) | \(3\) | \(4\) | \(q-\beta _{1}q^{2}+(\beta _{1}+\beta _{3}-\beta _{5})q^{3}+(-3+\cdots)q^{4}+\cdots\) |
| 95.2.e.c | $8$ | $0.759$ | 8.0.4601315889.1 | None | \(-1\) | \(-3\) | \(-4\) | \(-8\) | \(q+\beta _{7}q^{2}+(\beta _{1}-\beta _{5})q^{3}+(-1+\beta _{4}+\cdots)q^{4}+\cdots\) |