Defining parameters
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(20\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(95))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 7 | 5 |
Cusp forms | 9 | 7 | 2 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(19\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(3\) |
Plus space | \(+\) | \(0\) | |
Minus space | \(-\) | \(7\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(95))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | 19 | |||||||
95.2.a.a | $3$ | $0.759$ | 3.3.148.1 | None | \(1\) | \(2\) | \(3\) | \(0\) | $-$ | $+$ | \(q+\beta _{1}q^{2}+(1-\beta _{1}-\beta _{2})q^{3}+(\beta _{1}+\beta _{2})q^{4}+\cdots\) | |
95.2.a.b | $4$ | $0.759$ | 4.4.11344.1 | None | \(-2\) | \(2\) | \(-4\) | \(4\) | $+$ | $-$ | \(q+\beta _{2}q^{2}-\beta _{3}q^{3}+(1+\beta _{1}-\beta _{2})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(95))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(95)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 2}\)