Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [95,11,Mod(17,95)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(95, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([9, 20]))
N = Newforms(chi, 11, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("95.17");
S:= CuspForms(chi, 11);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 11 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.q (of order \(36\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(60.3589390040\) |
Analytic rank: | \(0\) |
Dimension: | \(1176\) |
Relative dimension: | \(98\) over \(\Q(\zeta_{36})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{36}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 | −50.7659 | + | 35.5466i | −234.369 | + | 20.5046i | 963.381 | − | 2646.87i | −362.646 | + | 3103.89i | 11169.1 | − | 9371.95i | 7490.51 | − | 27955.0i | 28755.4 | + | 107317.i | −3643.75 | + | 642.492i | −91922.7 | − | 170462.i |
17.2 | −50.3563 | + | 35.2599i | 369.427 | − | 32.3207i | 942.271 | − | 2588.87i | −334.791 | + | 3107.01i | −17463.4 | + | 14653.5i | −2370.23 | + | 8845.80i | 27541.4 | + | 102786.i | 77279.7 | − | 13626.5i | −92694.1 | − | 168262.i |
17.3 | −49.6554 | + | 34.7691i | −103.426 | + | 9.04863i | 906.541 | − | 2490.70i | 1047.53 | − | 2944.20i | 4821.06 | − | 4045.35i | −2245.69 | + | 8381.04i | 25519.1 | + | 95238.6i | −47536.8 | + | 8382.02i | 50351.4 | + | 182617.i |
17.4 | −49.2585 | + | 34.4912i | 224.899 | − | 19.6761i | 886.530 | − | 2435.72i | −1840.89 | − | 2525.22i | −10399.5 | + | 8726.24i | 2289.79 | − | 8545.62i | 24404.5 | + | 91078.8i | −7959.53 | + | 1403.48i | 177777. | + | 60893.9i |
17.5 | −48.1562 | + | 33.7193i | −439.074 | + | 38.4140i | 831.797 | − | 2285.34i | −2756.69 | − | 1471.82i | 19848.8 | − | 16655.2i | −3225.89 | + | 12039.2i | 21423.5 | + | 79953.5i | 133159. | − | 23479.5i | 182381. | − | 22076.4i |
17.6 | −47.6180 | + | 33.3425i | −235.686 | + | 20.6198i | 805.526 | − | 2213.16i | 3022.82 | + | 792.567i | 10535.4 | − | 8840.24i | −6417.62 | + | 23950.9i | 20028.4 | + | 74747.0i | −3029.23 | + | 534.136i | −170367. | + | 63048.0i |
17.7 | −46.8362 | + | 32.7951i | −24.4621 | + | 2.14016i | 767.885 | − | 2109.75i | −2989.34 | + | 910.761i | 1075.53 | − | 902.473i | −697.602 | + | 2603.49i | 18070.9 | + | 67441.7i | −57558.1 | + | 10149.0i | 110141. | − | 140692.i |
17.8 | −46.3841 | + | 32.4785i | 349.106 | − | 30.5428i | 746.405 | − | 2050.73i | 3016.75 | − | 815.370i | −15201.0 | + | 12755.1i | 3397.19 | − | 12678.5i | 16976.1 | + | 63355.7i | 62790.2 | − | 11071.6i | −113447. | + | 135800.i |
17.9 | −45.2039 | + | 31.6521i | 79.5717 | − | 6.96162i | 691.310 | − | 1899.36i | 1901.07 | + | 2480.24i | −3376.60 | + | 2833.31i | −3012.33 | + | 11242.2i | 14243.4 | + | 53157.1i | −51868.7 | + | 9145.86i | −164440. | − | 51943.7i |
17.10 | −44.8141 | + | 31.3791i | 97.5372 | − | 8.53340i | 673.420 | − | 1850.21i | 3033.45 | − | 750.882i | −4103.26 | + | 3443.05i | 7277.21 | − | 27158.9i | 13379.9 | + | 49934.6i | −48711.2 | + | 8589.10i | −112379. | + | 128837.i |
17.11 | −42.5372 | + | 29.7849i | −412.736 | + | 36.1097i | 572.048 | − | 1571.69i | 2847.42 | − | 1287.57i | 16481.1 | − | 13829.3i | 4975.77 | − | 18569.8i | 8716.62 | + | 32530.9i | 110895. | − | 19553.8i | −82771.2 | + | 139580.i |
17.12 | −41.5866 | + | 29.1192i | 438.355 | − | 38.3511i | 531.286 | − | 1459.69i | −2087.89 | − | 2325.16i | −17112.9 | + | 14359.4i | −4158.70 | + | 15520.5i | 6955.82 | + | 25959.5i | 132532. | − | 23369.0i | 154535. | + | 35897.6i |
17.13 | −40.3474 | + | 28.2516i | 89.1647 | − | 7.80090i | 479.534 | − | 1317.51i | −2973.56 | + | 961.024i | −3377.17 | + | 2833.79i | −7850.04 | + | 29296.8i | 4819.60 | + | 17987.0i | −50262.4 | + | 8862.62i | 92825.0 | − | 122782.i |
17.14 | −39.9850 | + | 27.9978i | −353.522 | + | 30.9292i | 464.693 | − | 1276.73i | −328.374 | + | 3107.70i | 13269.6 | − | 11134.5i | −1527.16 | + | 5699.42i | 4228.13 | + | 15779.6i | 65869.3 | − | 11614.5i | −73878.6 | − | 133455.i |
17.15 | −39.7286 | + | 27.8183i | −187.378 | + | 16.3934i | 454.278 | − | 1248.12i | −3022.75 | − | 792.837i | 6988.23 | − | 5863.82i | 3119.23 | − | 11641.1i | 3818.75 | + | 14251.8i | −23310.2 | + | 4110.21i | 142145. | − | 52589.4i |
17.16 | −38.1123 | + | 26.6865i | 359.654 | − | 31.4657i | 390.150 | − | 1071.93i | −2908.90 | + | 1141.90i | −12867.6 | + | 10797.2i | 6962.77 | − | 25985.4i | 1405.56 | + | 5245.61i | 70209.3 | − | 12379.8i | 80391.6 | − | 121149.i |
17.17 | −37.8908 | + | 26.5314i | 173.869 | − | 15.2116i | 381.567 | − | 1048.35i | 382.825 | − | 3101.46i | −6184.44 | + | 5189.36i | −3647.41 | + | 13612.3i | 1096.94 | + | 4093.85i | −28152.9 | + | 4964.12i | 67780.6 | + | 127674.i |
17.18 | −36.3982 | + | 25.4863i | 366.098 | − | 32.0294i | 325.050 | − | 893.066i | 2996.32 | − | 887.528i | −12509.0 | + | 10496.3i | −4989.15 | + | 18619.8i | −846.641 | − | 3159.71i | 74850.0 | − | 13198.1i | −86440.8 | + | 108669.i |
17.19 | −36.0253 | + | 25.2252i | −223.274 | + | 19.5340i | 311.285 | − | 855.248i | 917.445 | − | 2987.29i | 7550.78 | − | 6335.86i | −1342.59 | + | 5010.62i | −1296.07 | − | 4837.00i | −8682.06 | + | 1530.88i | 42303.8 | + | 130761.i |
17.20 | −35.5850 | + | 24.9169i | −159.445 | + | 13.9496i | 295.212 | − | 811.088i | −1338.88 | − | 2823.66i | 5326.26 | − | 4469.26i | 7073.63 | − | 26399.1i | −1808.60 | − | 6749.79i | −32923.8 | + | 5805.36i | 118001. | + | 67119.1i |
See next 80 embeddings (of 1176 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
19.e | even | 9 | 1 | inner |
95.q | odd | 36 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.11.q.a | ✓ | 1176 |
5.c | odd | 4 | 1 | inner | 95.11.q.a | ✓ | 1176 |
19.e | even | 9 | 1 | inner | 95.11.q.a | ✓ | 1176 |
95.q | odd | 36 | 1 | inner | 95.11.q.a | ✓ | 1176 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.11.q.a | ✓ | 1176 | 1.a | even | 1 | 1 | trivial |
95.11.q.a | ✓ | 1176 | 5.c | odd | 4 | 1 | inner |
95.11.q.a | ✓ | 1176 | 19.e | even | 9 | 1 | inner |
95.11.q.a | ✓ | 1176 | 95.q | odd | 36 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{11}^{\mathrm{new}}(95, [\chi])\).