Properties

Label 95.11.q
Level $95$
Weight $11$
Character orbit 95.q
Rep. character $\chi_{95}(17,\cdot)$
Character field $\Q(\zeta_{36})$
Dimension $1176$
Newform subspaces $1$
Sturm bound $110$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 95.q (of order \(36\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(\zeta_{36})\)
Newform subspaces: \( 1 \)
Sturm bound: \(110\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(95, [\chi])\).

Total New Old
Modular forms 1224 1224 0
Cusp forms 1176 1176 0
Eisenstein series 48 48 0

Trace form

\( 1176 q - 12 q^{2} - 12 q^{3} - 12 q^{5} - 14604 q^{6} - 11688 q^{7} - 6 q^{8} - 12 q^{10} - 12 q^{11} - 6 q^{12} - 12 q^{13} + 3424146 q^{15} - 13618884 q^{16} - 3657378 q^{17} - 23774232 q^{18} + 38894436 q^{20}+ \cdots - 86078409906 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.11.q.a 95.q 95.q $1176$ $60.359$ None 95.11.q.a \(-12\) \(-12\) \(-12\) \(-11688\) $\mathrm{SU}(2)[C_{36}]$