Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [95,11,Mod(14,95)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(95, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 7]))
N = Newforms(chi, 11, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("95.14");
S:= CuspForms(chi, 11);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 11 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.o (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(60.3589390040\) |
Analytic rank: | \(0\) |
Dimension: | \(588\) |
Relative dimension: | \(98\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14.1 | −60.0818 | + | 21.8680i | −57.8803 | + | 328.256i | 2347.19 | − | 1969.52i | 3025.95 | + | 780.555i | −3700.74 | − | 20987.9i | −15063.3 | + | 8696.78i | −65217.5 | + | 112960.i | −48913.8 | − | 17803.2i | −198874. | + | 19274.3i |
14.2 | −58.7309 | + | 21.3763i | 77.9277 | − | 441.950i | 2207.94 | − | 1852.68i | −3124.89 | − | 26.5577i | 4870.49 | + | 27621.9i | 4083.93 | − | 2357.86i | −58070.7 | + | 100581.i | −133759. | − | 48684.3i | 184095. | − | 65238.7i |
14.3 | −56.6254 | + | 20.6100i | 29.8981 | − | 169.560i | 1997.24 | − | 1675.88i | 2870.07 | − | 1236.26i | 1801.64 | + | 10217.6i | 18208.5 | − | 10512.7i | −47701.8 | + | 82622.0i | 27631.1 | + | 10056.9i | −137040. | + | 129156.i |
14.4 | −56.5359 | + | 20.5774i | 7.49325 | − | 42.4964i | 1988.45 | − | 1668.50i | −1014.68 | − | 2955.68i | 450.826 | + | 2556.76i | −12222.5 | + | 7056.68i | −47281.0 | + | 81893.1i | 53738.1 | + | 19559.1i | 118186. | + | 146223.i |
14.5 | −55.5010 | + | 20.2007i | −66.6891 | + | 378.213i | 1887.87 | − | 1584.11i | −3012.75 | − | 830.042i | −3938.86 | − | 22338.4i | 282.737 | − | 163.238i | −42538.2 | + | 73678.3i | −83109.4 | − | 30249.4i | 183978. | − | 14791.5i |
14.6 | −54.6793 | + | 19.9017i | −24.3306 | + | 137.986i | 1809.33 | − | 1518.20i | −445.628 | + | 3093.06i | −1415.76 | − | 8029.19i | 6642.36 | − | 3834.97i | −38925.4 | + | 67420.8i | 37039.8 | + | 13481.4i | −37190.4 | − | 177995.i |
14.7 | −54.3413 | + | 19.7786i | 31.4181 | − | 178.181i | 1777.35 | − | 1491.38i | 165.517 | + | 3120.61i | 1816.87 | + | 10304.0i | 9291.27 | − | 5364.32i | −37477.9 | + | 64913.6i | 24726.6 | + | 8999.73i | −70715.8 | − | 166304.i |
14.8 | −52.0045 | + | 18.9281i | −9.70442 | + | 55.0365i | 1561.77 | − | 1310.48i | −2404.05 | − | 1996.53i | −537.062 | − | 3045.83i | 24992.6 | − | 14429.5i | −28079.0 | + | 48634.2i | 52553.1 | + | 19127.8i | 162812. | + | 58324.6i |
14.9 | −51.0497 | + | 18.5806i | 46.5101 | − | 263.772i | 1476.40 | − | 1238.85i | 2310.54 | + | 2104.05i | 2526.71 | + | 14329.7i | −11690.5 | + | 6749.50i | −24536.5 | + | 42498.5i | −11924.6 | − | 4340.21i | −157047. | − | 64480.0i |
14.10 | −50.4477 | + | 18.3614i | 8.30012 | − | 47.0723i | 1423.39 | − | 1194.37i | −2581.11 | + | 1761.68i | 445.594 | + | 2527.09i | −27105.4 | + | 15649.3i | −22389.7 | + | 38780.1i | 53341.0 | + | 19414.5i | 97863.8 | − | 136265.i |
14.11 | −49.5545 | + | 18.0364i | 72.1457 | − | 409.159i | 1345.91 | − | 1129.35i | 2734.31 | − | 1513.00i | 3804.59 | + | 21576.9i | −14159.9 | + | 8175.21i | −19326.2 | + | 33474.0i | −106718. | − | 38842.1i | −108208. | + | 124293.i |
14.12 | −48.4927 | + | 17.6499i | −50.5569 | + | 286.723i | 1255.59 | − | 1053.57i | −2510.27 | + | 1861.23i | −2608.98 | − | 14796.3i | 1004.07 | − | 579.697i | −15869.9 | + | 27487.5i | −24165.9 | − | 8795.67i | 88879.3 | − | 134562.i |
14.13 | −47.3075 | + | 17.2185i | −28.4010 | + | 161.070i | 1157.09 | − | 970.917i | 2701.98 | − | 1570.00i | −1429.81 | − | 8108.85i | 9830.11 | − | 5675.41i | −12245.5 | + | 21209.9i | 30351.0 | + | 11046.8i | −100791. | + | 120797.i |
14.14 | −47.0573 | + | 17.1275i | −23.4653 | + | 133.078i | 1136.61 | − | 953.731i | 1823.26 | − | 2537.98i | −1175.08 | − | 6664.22i | −14012.0 | + | 8089.82i | −11511.3 | + | 19938.2i | 38328.6 | + | 13950.5i | −42328.3 | + | 150658.i |
14.15 | −45.2762 | + | 16.4792i | −64.0259 | + | 363.109i | 993.941 | − | 834.015i | 2685.52 | + | 1598.00i | −3084.89 | − | 17495.3i | 27021.6 | − | 15600.9i | −6588.82 | + | 11412.2i | −72260.9 | − | 26300.8i | −147924. | − | 28096.0i |
14.16 | −44.7155 | + | 16.2751i | −69.6806 | + | 395.179i | 950.164 | − | 797.283i | 292.669 | − | 3111.27i | −3315.77 | − | 18804.7i | 431.688 | − | 249.235i | −5147.57 | + | 8915.85i | −95822.8 | − | 34876.6i | 37549.3 | + | 143885.i |
14.17 | −43.4596 | + | 15.8180i | 48.3680 | − | 274.309i | 854.096 | − | 716.672i | −3007.27 | + | 849.673i | 2236.96 | + | 12686.4i | −798.679 | + | 461.118i | −2103.00 | + | 3642.50i | −17417.9 | − | 6339.58i | 117255. | − | 84495.4i |
14.18 | −43.0116 | + | 15.6549i | 40.6903 | − | 230.766i | 820.488 | − | 688.472i | −1284.24 | − | 2848.92i | 1862.47 | + | 10562.6i | −9704.24 | + | 5602.75i | −1077.28 | + | 1865.91i | 3890.60 | + | 1416.06i | 99836.7 | + | 102432.i |
14.19 | −39.9647 | + | 14.5460i | 63.6154 | − | 360.781i | 601.166 | − | 504.438i | 142.147 | − | 3121.77i | 2705.54 | + | 15343.9i | 18046.6 | − | 10419.2i | 5087.26 | − | 8811.39i | −70628.0 | − | 25706.5i | 39728.3 | + | 126828.i |
14.20 | −39.5911 | + | 14.4100i | −31.6778 | + | 179.654i | 575.376 | − | 482.798i | 2283.06 | + | 2133.84i | −1334.65 | − | 7569.16i | −23263.4 | + | 13431.1i | 5748.90 | − | 9957.38i | 24215.9 | + | 8813.87i | −121137. | − | 51582.4i |
See next 80 embeddings (of 588 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
19.f | odd | 18 | 1 | inner |
95.o | odd | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.11.o.a | ✓ | 588 |
5.b | even | 2 | 1 | inner | 95.11.o.a | ✓ | 588 |
19.f | odd | 18 | 1 | inner | 95.11.o.a | ✓ | 588 |
95.o | odd | 18 | 1 | inner | 95.11.o.a | ✓ | 588 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.11.o.a | ✓ | 588 | 1.a | even | 1 | 1 | trivial |
95.11.o.a | ✓ | 588 | 5.b | even | 2 | 1 | inner |
95.11.o.a | ✓ | 588 | 19.f | odd | 18 | 1 | inner |
95.11.o.a | ✓ | 588 | 95.o | odd | 18 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{11}^{\mathrm{new}}(95, [\chi])\).